Fall 2021 ME424 Modern Control and Estimation

Linear Algebra Review: Part III Geometry ~ linear algebra

Prof. Wei Zhang
Department of Mechanical and Energy Engineering SUSTech Institute of Robotics
Southern University of Science and Technology

zhangw3@sustech.edu.cn
https://www.wzhanglab.site/

Outline

- Inner product
- Projection
- Geometric sets
- Lines
- Convex set and cone
- Hyperplanes
- Polytopes
- Ball, ellipsoid

Inner Product

- Inner product of vectors in $\left.R^{n}:<v, w\right\rangle \stackrel{\Delta}{=} v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}$

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right],\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right]
$$

- Norm of $v \in R^{n}:\|v\|=\sqrt{\langle v, v\rangle}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdot+v_{n}^{2}}$
- Angle between $v, w \in R^{n}$:

$$
\begin{aligned}
& \left.\frac{\Delta v, w\rangle}{\|v\|\|w\|} \begin{array}{l}
\begin{array}{l}
z=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
\cos \theta=\frac{\langle v, w\rangle}{\|v\|\|w\|}=\frac{2}{\sqrt{2} 2} \\
\\
=\frac{\sqrt{2}}{2} \\
v^{\top} z=0
\end{array}
\end{array} . \begin{array}{l}
1 \\
1
\end{array}\right], w=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
\end{aligned}
$$

- Orthogonality:

$$
v \perp w \Rightarrow \cos \theta=0 \Rightarrow\langle v, w\rangle=v^{\top} w=0
$$

Inner Product

- General inner product $\langle\because, \cdot\rangle: V \times V \rightarrow R$
- maps each pair in a vector space to a scaler

$$
f=\left[\begin{array}{c}
f_{1} \\
s_{2} \\
\vdots \\
f_{100}
\end{array}\right] \quad g=\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{100}
\end{array}\right]
$$

- satisfies several key properties: linearity, conjugate, positive definiteness ... vector space for which inner product can be defined is called joiner product quale
- Inner product of matrices in $\underbrace{R^{m \times n}}:<A, B \geqslant \triangleq \operatorname{tr}\left(A^{\top} B\right)^{\text {inner }}=\operatorname{tr}\left(A B^{\top}\right)$
$\operatorname{eg:A} A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 0 & -1\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right] \quad \begin{aligned} \begin{array}{c}m \times n \\ \text { matrices }\end{array} & \left.\begin{array}{rl}\operatorname{tr}(\cdot) & =\operatorname{sum}^{m} \text { of diagonals } \\ & =\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j} B_{i j}\end{array}\right)\end{aligned}$

$$
\langle A, B\rangle=\operatorname{tr}\left(A^{\top} B\right)=\operatorname{tr}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]\right)=\operatorname{tr}\left(\left[\begin{array}{cc}
0 & 1 \\
1 & -2
\end{array}\right]\right)=-2, \angle(A, B)>q,{ }^{\circ}
$$

- Inner product of two functions $£, g$ on interval $[a, b]$:

$$
\begin{cases}f:[a, b] \rightarrow \mathbb{R} & \langle f, g\rangle \triangleq \int_{a}^{b} f(x) g(x) d x \\
g:[a, b] \rightarrow \mathbb{R} & \begin{array}{l}
\text { on } \\
\text { another choice }
\end{array} \stackrel{1}{|b-a|} \int_{a}^{b} f(x) g(x) d x\end{cases}
$$

$$
\begin{aligned}
& \langle f, g\rangle \triangleq \int_{a}^{b} f(x) g(x) d x \\
& \begin{array}{c}
\text { another choice } \\
\text { CleAR Lab © sustech }
\end{array} \frac{1}{|b-a|} \int_{a}^{b} f(x) g(x) d x
\end{aligned}
$$

Projection

- Projection of $v \in R^{n}$ along direction e :
suppose $\|e\|=1$, unit vector] If ne $\| \neq 1$, we can normalize it

$$
\begin{aligned}
\operatorname{prog}_{e}^{\prime}(v) & =(\|v\| \cos \theta) \cdot e: \quad \operatorname{Proj}_{e}(v)=\left\langle v, \frac{e}{\|e\|}\right\rangle \cdot \frac{e}{\|e\|} \\
& =\frac{\|v\|<v, e\rangle}{\|v\| \cdot 1} \cdot e \\
& =\langle v, e\rangle \cdot e
\end{aligned}
$$

- $\left\{e_{1}, \ldots, e_{k}\right\}$ be orthonormal basis of vector space V, then any $v \in V$,

$$
v=<v, e_{1}>e_{1}+\cdots+<v, e_{k}>e_{k}
$$

Projection

- Fourier series: Consider a vector space of periodic functions:

- Fourier series: Consider a vector space of periodic function
$\qquad V=$ integrable functions over $[0,2 \pi)\}$
- Inner product: $<f, g>=\int_{0}^{2 \pi} f(x) g(x) d x$
- Basis: $B=\{1, \cos x, \underbrace{\sin (x)}, \underbrace{\cos (2 x}), \sin (2 x), \ldots\}$
" ϕ_{i} " are orthonal:
- $f \in V$, then

Representation of Geometric Objects / sets

- Implicit representation via (sub)-level sets:

$$
C=\{(\cos \alpha, \sin \alpha) ; \quad \alpha \in[0,2 \pi)\}
$$

connection with Linear algebra:

$$
\left\{\begin{array}{l}
f(x) \text { linear } f(x)=A x+b \\
\text { or quadratic } \Rightarrow f(x)=x^{\top} \theta x
\end{array}\right.
$$

Some Simple Geometric Sets

- Line segment: Given $x_{1} \neq x_{2} \in R^{n}:\left\{x_{2}+\alpha\left(x_{1}-x_{2}\right): \alpha \in[0,1]\right\}$
- Line (explicit): $\left\{x_{2}+\alpha\left(x_{1}-x_{2}\right): \alpha \in R\right\}$
- Line: (implicit representation)
- e.g. in $R^{2}:\left\{x \in R^{2}: a^{T} x=b\right\}$

Some Simple Geometric Sets

- Hyperplanes (Implicit): $\left\{x \in R^{n}: a^{T} x=b\right\}$
- Hyperplanes (Explicit): $\left\{x \in R^{n}: a^{T} x=b\right\} \Rightarrow\left\{x_{0}+\sum_{i} \alpha_{i} v_{i}: \alpha_{i} \in R, i=\right.$ $1, \ldots, n-1\}$
- Halfspaces: $\left\{x \in R^{n}: a^{T} x \leq b\right\}$

Some Simple Geometric Sets

- Convex set: A set S is called convex if

$$
x_{1}, x_{2} \in S \Rightarrow \alpha x_{1}+(1-\alpha) x_{2} \in S
$$

- Convex combination of $x_{1}, \ldots, x_{k} \in R^{n}$

$$
\left\{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{k} x_{k}: \alpha_{i} \geq 0, \sum \alpha_{i}=1\right\}
$$

- Convex hull $\overline{c o}(S)$: set of all convex combinations of points in S

Some Simple Geometric Sets

- Cone: A set S is called a cone if $x \in S \Rightarrow \lambda x \in S, \forall \lambda \geq 0$
- Conic combination of $x_{1}, \ldots, x_{k} \in R^{n}$

$$
\operatorname{cone}\left(x_{1}, \ldots, x_{k}\right)=\left\{\alpha_{1} x_{1}+\alpha_{2} x_{2}+\cdots+\alpha_{k} x_{k}: \alpha_{i} \geq 0\right\}
$$

Some Simple Geometric Sets

- (Convex) Polyhedron: intersection of a finite number of half spaces

$$
P=\{x: A x \leq b\}
$$

- Polyhedral cone: intersection of finitely many halfspaces that contain the origin:

$$
P=\{x: A x \leq 0\}
$$

- Polytope: bounded polyhedron

Some Simple Geometric Sets

- Polyhedron (vertex representation):

$$
P=\overline{\operatorname{co}}\left(v_{1}, \ldots, v_{m}\right) \oplus \operatorname{cone}\left(r_{1}, \ldots, r_{q}\right)
$$

Some Simple Geometric Sets

- Euclidean balls: $B\left(x_{c}, r\right)=\left\{x \in R^{n}:\left\|x-x_{c}\right\|_{2} \leq r\right\}$ or $B\left(x_{c}, r\right)=\left\{x_{c}+\right.$ $\left.r u: u \in R^{2},\|u\|_{2} \leq 1\right\}$
- Ellipsoids: $E=\left\{x \in R^{n}:\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}$ or $E=\left\{x_{c}+A u: u \in\right.$ $\left.R^{2},\|u\|_{2} \leq 1\right\}$

