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Outline

This lecture introduces basic concepts and results on Lyapunov stability of
nonlinear systems.

• Background

• Lyapunov Stability Definitions

• Lyapunov Stability Theorem

• Lyapunov Stability of Linear Systems

• Converse Lyapunov Function

• Extension to Discrete-Time System
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What is Stability Analysis?

• system asymptotic behavior (not too much about transient)

• ability to return to the desired asymptotic behavior (not just convergence)
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General ODE Models for Dynamical Systems

• ODE: ẋ = f(x, u), with x(0) = x0

- x ∈ X ⊆ Rn: state
- u ∈ U ⊆ Rm: control input
- f : Rn × Rm → Rn: (time-invariant) vector field

• System output y = g(x, u)

• Control law: µ : X → U

• Closed-loop dynamics under µ: ẋ = f(x, µ(x))

• Autonomous system:

ẋ = f(x), with x(0) = x0 (1)
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Example: Pendulum

• Pendulum with driving force: θ̈ = −ρ
Ml2 θ̇ +

cos θ
Ml u+ g

l sin θ

A Numerical study of the Forced Damped Pendulum

Zhiping You, Ph.D.
Civilized Software Inc.
12109 Heritage Park Circle
Silver Spring, MD 20906 USA
Phone: (301) 962-3711
email: csi@civlized.com
URL: www.civilized.com

Abstract: Several cases of the Forced damped pendulum are numerically demon-
strated using the mathematical modeling package MLAB. A Poincaré return map
for the chaotic case is also given.

An ideal pendulum (i.e. with no friction) will swing back and forth (or
loop in a full circle) forever if there is no outside force other than gravity
acting upon it. Moreover, a pendulum with friction will come to rest if
there is no other outside force besides gravity acting upon it. A more general
forced damped pendulum with a periodic driving force pushing it shows more
interesting asymptotic behavior than these two trivial cases. The angular
position in radians as a function of time θ(t) of a forced damped pendulum
is described by the following second order differential equation.

d2θ

dt2
+ ν

dθ

dt
+ sinθ = ρsin(2πft), θ(0) = θ0,

dθ

dt
(0) = s, (1)

where d2θ
dt2

represents the inertia, ν dθ
dt

represents friction at the pivot, sin(θ)
represents gravity, and ρsin(2πft) rep-
resents a sinusoidal frequency f driv-
ing torque applied at the pivot. θ0 is
the initial angular position and s is the
initial angular velocity of the pendu-
lum.
Numerical solutions show that both
chaotic and periodic solutions of the
forced damped pendulum equation are
possible depending on the particular
choice of system parameters ν, ρ and
f .

M

θ

Torque

Gravity

If we want to see how the pendulum is actually moving, we can solve the
differential equation and plot the angle variable θ against time t. We will
use the facilities of the mathematical modeling system MLAB to solve this

1

-1 0 1 2 3 4 5 6 7

x
1

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 2

Background Advanced Control for Robotics Wei Zhang (SUSTech) 6 / 36



Examples: Adaptive Control

• Closed-loop dynamics under adaptive control:{
ẏ = y + u

u = −ky, k̇ = y2

-1.5 -1 -0.5 0 0.5 1 1.5

x
1

-0.5

0

0.5

1

1.5

2

2.5

3

x 2

Background Advanced Control for Robotics Wei Zhang (SUSTech) 7 / 36



Equilibrium Point of Dynamical Systems

Definition 1 (Equilibrium Point).

A state x∗ is an equilibrium point of system (1) if once x(t) = x∗, it remains
equal to x∗ at all future time.

• Mathematically: f(x∗) = 0

• E.g undamped pendulum with no driving force:

-1 0 1 2 3 4 5 6 7

x
1

-1.5

-1

-0.5

0

0.5

1

1.5

2

x 2

Background Advanced Control for Robotics Wei Zhang (SUSTech) 8 / 36



Invariant Set of Dynamical Systems

Definition 2 (Invariant Set).

A set E is an invariant set of system (1) if every trajectory which starts from a
point in E remains in E at all future time.

• Mathematically: If x(t0) ∈ E, then x(t) ∈ E, ∀t ≥ t0
• E.g: closed-loop dynamics under adaptive control:{

ẏ = y + u

u = −ky, k̇ = y2
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Lyapunov Stability Definitions (1/2)

Consider a time-invariant autonomous (with no control) nonlinear system:

ẋ = f(x) with I.C. x(0) = x0 (2)

• Assumptions: (i) f Lipschitz continuous; (ii) origin is an isolated equilibrium
f(0) = 0

• Stability Definitions: The equilibrium x = 0 is called

- stable in the sense of Lyapunov, if

∀ϵ > 0,∃δ > 0, s.t. ∥x(0)∥ ≤ δ ⇒ ∥x(t)∥ ≤ ϵ,∀t ≥ 0
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Lyapunov Stability Definitions (2/2)

- asymptotically stable if it is stable and δ can be chosen so that

∥x(0)∥ ≤ δ ⇒ x(t) → 0 as t → ∞

- exponentially stable if there exist positive constants δ, λ, c such that

∥x(t)∥ ≤ c∥x(0)∥e−λt, ∀∥x(0)∥ ≤ δ

- globally asymptotically/exponentially stable if the above conditions holds for
all δ > 0

• Region of Attraction: RA ≜ {x ∈ Rn : whenever x(0) = x, then x(t) → 0}
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Stability Examples using 2D Phase Portrait (1/2)

• Undamped pendulum with no driving
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• Closed-loop dynamics under adaptive
control: {

ẏ = y + u

u = −ky, k̇ = y2
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Stability Examples using 2D Phase Portrait (2/2)

Does attractiveness implies stable in Lyapunov sense?

• Answer is NO. e.g.:

{
ẋ1 = x2

1 − x2
2

ẋ2 = 2x1x2

• By inspection of its vector field, we see that
x(t) → 0 for all x(0) ∈ R2

• However, there is no δ-ball satisfying the
Lyapunov stability condition −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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How to verify stability of a system? (1/2)

• Find explicit solution of the ODE x(t) and check stability definitions

- typically not possible for nonlinear systems

• Numerical simulations of ODE do not provide stability guarantees and offer
limited insights

• Need to determine stability without explicitly solving the ODE

• Preferably, analysis only depends on the vector field
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How to verify stability of a system? (2/2)
• The most powerful tool is: Lyapunov function

• State trajectory x(t) governed by complex dynamics in Rn

• Lyapunov function V : Rn → R maps x(t) to a scalar function of time
V (x(t))

• If the function is designed such that: [x(t) → equilibrium] ⇔ [V (x(t)) → 0].
Then we can study V (x(t)) as function of time t to infer stability of the state
trajectory in Rn.

Lyapunov Theorem Advanced Control for Robotics Wei Zhang (SUSTech) 17 / 36



Sign Definite Functions

Assume that 0 ∈ D ⊆ Rn

• g : D → R is called positive semidefinite (PSD) on D if g(0) = 0 and
g(x) ≥ 0,∀x ∈ D

- For quadratic function: g(x) = xTPx: [g is PSD] ⇔ [P is a PSD matrix]

• g : D → R is called positive definite (PD) on D if g(0) = 0 and
g(x) > 0,∀x ∈ D \ {0}
- Similarly, if g(x) = xTPx is quadratic, then [g is PD] ⇔ [P is a PD matrix]

• g is negative semidefinite (NSD) if −g is PSD

• g : Rn → R is radically unbounded if g(x) → ∞ as ∥x∥ → ∞
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Lyapunov Stability Theorem

[Lyapunov Theorem]: Let D ⊂ Rn be a set containing an open neighborhood of the
origin. If there exists a C1 function V : D → R such that

V is PD (3)

V̇ (x) ≜ ∇V (x)T f(x) is NSD (4)

then the origin is stable. If in addition,

V̇ (x) ≜ ∇V (x)T f(x) is ND (5)

then the origin is asymptotically stable.

Remarks:

• A PD C1 function satisfying (4) or (5) will be called a Lyapunov function

• Under condition (5), if V is also radially unbounded
⇒ globally asymptotically stable
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Proof of Lyapunov Stability Theorem (1/3)

Main idea:
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Proof of Lyapunov Stability Theorem (2/3)

Sketch of proof of Lyapunov stability theorem:

• First show stability under condition (4):

- Define sublevel set: Ωb = {x ∈ Rn : V (x) ≤ b}. Condition (4) implies V (x(t))
nonincreasing along system trajectory ⇒ If x(0) ∈ Ωb, then x(t) ∈ Ωb, ∀t.

- Given arbitrary ϵ > 0, if we can find δ, b such that B(0, δ) ⊆ Ωb ⊆ B(0, ϵ). Then
the Lyapunov stability conditions are satisfied. Below is to show how we can find
such b and δ.

- V is continuous ⇒ m = min∥x∥=ϵ V (x) exists (due to Weierstrass theorem). In
addition, V is PD ⇒ m > 0. Therefore, if we choose b ∈ (0,m), then
Ωb ⊆ B(0, ϵ).

- V (x) is continuous at origin ⇒ for any b > 0, there exists δ > 0 such that
|V (x)− V (0)| = V (x) < b,∀x ∈ B(0, δ). This implies that B(0, δ) ⊆ Ωb.
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Proof of Lyapunov Stability Theorem (3/3)
• Second, show asymptotic stability under condition (5):

- We know V (x(t)) decreases monotonically as t → ∞ and V (x(t)) ≥ 0, ∀t.
Therefore, c = limt→∞ V (x(t)) exists. So it suffices to show c = 0. Let us use a
contradiction argument.

- Suppose c ̸= 0. Then c > 0. Therefore, x(t) /∈ Ωc = {x ∈ Rn : V (x) ≤ c},∀t.
We can choose β > 0 such that B(0, β) ⊆ Ωc (due to continuitiy of V at 0).

- Now let a = −maxβ≤∥x∥≤ϵ V̇ (x). Since V is ND, then a > 0

- V (x(t)) = V (x(0)) +
∫ t

0
V̇ (x(s))ds ≤ V (x(0))− a · t < 0 for sufficiently large t.

⇒ contradiction!
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Exponential Lyapunov Function

Definition 3 (Exponential Lyapunov Function).

V : D → R is called an Exponential Lyapunov Function (ELF) on D ⊂ Rn if
∃k1, k2, k3, α > 0 such that{

k1∥x∥α ≤ V (x) ≤ k2∥x∥α

LfV (x) ≤ −k3V (x)

Theorem 1 (ELF Theorem).

If system (2) has an ELF, then it is exponentially stable.
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Stability Analysis Examples (1/2)

Example 1.{
ẋ1 = −x1 + x2 + x1x2

ẋ2 = x1 − x2 − x2
1 − x3

2

Try V (x) = ∥x∥2
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Stability Analysis Examples (2/2)
Example 2.{
ẋ1 = −x1 + x1x2

ẋ2 = −x2

• Can we find a simple quadratic Lyapunov function? First try: V (x) = x2
1 + x2

2

• In fact, the system does not have any (global) polynomial Lyapunov function. But
it is GAS with a Lyapunov function V (x) = ln(1 + x2

1) + x2
2.
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Stability of Linear Systems

Consider autonomous linear system: ẋ = f(x) = Ax.

• Recall solution to the linear system: x(t) = eAtx(0)

• Only possible equilibrium is origin x = 0

• Fact: Origin asympt. stable ⇔ Re(λi) < 0 for all eigenvalues λi of A

• Discrete time system: x(k + 1) = Ax(k) is asymp. stable iff eig(A) inside
unit circle
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Lyapunov Function of Linear Systems

• Consider a quadratic Lyapunov function candidate: V (x) = xTPx, with
P ∈ Rn×n

- V is PD ⇒ P ≻ 0
- LfV is ND ⇒
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Stability Conditions for Linear Systems

Theorem 2 (Stability Conditions for Linear System).

For an autonomous Linear system ẋ = Ax. The following statements are equivalent.

• System is (globally) asymptotically stable

• System is (globally) exponentially stable

• Re(λi) < 0 for all eigenvalues λi of A

• System has a quadratic Lyapunov function

• For any symmetric Q ≻ 0, there exists a symmetric P ≻ 0 that solves the following
Lyapunov equation:

PA+ATP = −Q

and V (x) = xTPx is a Lyapunov function of the system.

Lyapunov Stability of Linear Systems Advanced Control for Robotics Wei Zhang (SUSTech) 29 / 36



Outline

• Background

• Lyapunov Stability Definitions

• Lyapunov Stability Theorem

• Lyapunov Stability of Linear Systems

• Converse Lyapunov Function

• Extension to Discrete-Time System

Converse Lyapunov Function Advanced Control for Robotics Wei Zhang (SUSTech) 30 / 36



When There is a Lyapunov Function?

• Converse Lyapunov Theorem for Asymptotic Stability
origin asymptotically stable;

f is locally Lipschitz on D

with region of attraction RA

⇒ ∃V s.t.


V is continuuos and PD on RA

LfV is ND on RA

V (x) → ∞ as x → ∂RA

• Converse Lyapunov Theorem for Exponential Stability{
origin exponentially stable on D;

f is C1
⇒ ∃ an ELF V on D

• Proofs are involved especially for the converse theorem for asymptotic
stability

• IMPORTANT: proofs of converse theorems often assume the knowledge of
system solution and hence are not constructive.
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What about Discrete Time Systems?

• So far, all our definitions, results, examples are given using continuous time
dynamical system models.

• All of them have discrete-time counterparts. The ideas and conclusions are
the ”same” (in spirit)

• For example, given autonomous discrete-time system: x(k + 1) = f(x(k))
with f(0) = 0 (origin is an equilibrium).

- Rate of change of a function V (x) along system trajectory can be defined as:

∆fV (x) ≜ V (f(x))− V (x)

- Asymptotically stable requires:

V is PD and ∆fV is ND

- Exponentially stable requires:

k1∥x∥α ≤ V (x) ≤ k2∥x∥α and ∆fV (x) ≤ −k3V (x)

- · · · · · · · · · · · ·
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Concluding Remarks

• We have learned different notions of internal stability, e.g. stability in
Lyapunov sense, asymptotic stability, globally asymptotic stability (G.A.S),
exponential stability, globally exponential stability (G.E.S)

• Sufficient condition to ensure stability is often the existence of a properly
defined Lyapunov function

• Key requirements for a Lyapunov function:

- positive definite and is zero at the system equilibrium
- decrease along system trajectory

• For linear system: G.A.S ⇔ G.E.S ⇔ Existence of a quadratic Lyapunov function

• The definitions and results in this lecture have sometimes been stated in
simplified forms to facilitate presentation. More general versions can be
found in standard textbooks on nonlinear systems

• Next Lecture: Semidefinite Programming and computational stability
analysis
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More Discussions

•

Extension to Discrete-Time System Advanced Control for Robotics Wei Zhang (SUSTech) 35 / 36



More Discussions

•
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