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This lecture introduces basic concepts and results on Lyapunov stability of
nonlinear systems.
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Lyapunov Stability Definitions

Lyapunov Stability Theorem

Lyapunov Stability of Linear Systems

Converse Lyapunov Function

e Extension to Discrete-Time System

Outline Advanced Control for Robotics Wei Zhang (SUSTech) 2/36



QOutline

e Background

e Lyapunov Stability Definitions

e Lyapunov Stability Theorem

e Lyapunov Stability of Linear Systems
e Converse Lyapunov Function

e Extension to Discrete-Time System



What is Stability Analysis?

® system asymptotic behavior (not too much about transient)

® ability to return to the desired asymptotic behavior (not just convergence)
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General ODE Models for Dynamical Systems
® ODE: & = f(x,u), with 2(0) = g
-z e X CR": state

- uw €U CR™: control input
- f:R" x R™ — R"™: (time-invariant) vector field

® System output y = g(z, u)
® Control law: p: X - U
® Closed-loop dynamics under p: z = f(z,pu(x))

® Autonomous system:

& = f(x), with z(0) = zg (1)
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Example: Pendulum

® Pendulum with driving force: § = —40 + cosfy + 9 sin 6

MI?
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Examples: Adaptive Control

® (Closed-loop dynamics under adaptive control:

y=y+u
u=—ky,k =1y
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Equilibrium Point of Dynamical Systems

Definition 1 (Equilibrium Point).

A state z* is an equilibrium point of system (1) if once z(t) = z*, it remains
equal to z* at all future time.

® Mathematically: f(z*) =0

® E.g undamped pendulum with no driving force:
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Invariant Set of Dynamical Systems

Definition 2 (Invariant Set).

A set E is an invariant set of system (1) if every trajectory which starts from a
point in E remains in F at all future time.

® Mathematically: If 2(tp) € E, then z(t) € E, Vt > t
® E.g: closed-loop dynamics under adaptive control:

y=y+u
u=—kyk =y’
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Lyapunov Stability Definitions (1/2)
Consider a time-invariant autonomous (with no control) nonlinear system:
& = f(x) with 1.C. 2(0) = = (2)

® Assumptions: (i) f Lipschitz continuous; (ii) origin is an isolated equilibrium
f(0)=0

® Stability Definitions: The equilibrium 2 = 0 is called

- stable in the sense of Lyapunov, if

Ve>0,36 >0, st. [[z(0)| <é=[z()|| <eVE>0
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Lyapunov Stability Definitions (2/2)
- asymptotically stable if it is stable and § can be chosen so that
|lz(0)]| <6 =z(t) > 0ast — 0
- exponentially stable if there exist positive constants 6, A, ¢ such that
le(®)]l < cllz(©)lle™,  Vlje(O)] <6

- globally asymptotically/exponentially stable if the above conditions holds for
alld >0

® Region of Attraction: R4 = {x € R™ : whenever 2(0) = x, then x(t) — 0}
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Stability Examples using 2D Phase Portrait (1/2)

® Undamped pendulum with no driving

® (Closed-loop dynamics under adaptive
control:
y=y+u
u = —ky, k= o>




Stability Examples using 2D Phase Portrait (2/2)

Does attractiveness implies stable in Lyapunov sense?

. 2 2

. rp =y —X

® Answer is NO. e.g.: < ! 2
To = 21‘1.272

® By inspection of its vector field, we see that
z(t) — 0 for all z(0) € R?

® However, there is no d-ball satisfying the
Lyapunov stability condition
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How to verify stability of a system? (1/2)

® Find explicit solution of the ODE z(t) and check stability definitions
- typically not possible for nonlinear systems

® Numerical simulations of ODE do not provide stability guarantees and offer
limited insights

® Need to determine stability without explicitly solving the ODE

® Preferably, analysis only depends on the vector field
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How to verify stability of a system? (2/2)

® The most powerful tool is: Lyapunov function
® State trajectory x(t) governed by complex dynamics in R™

® | yapunov function V : R” — R maps z(t) to a scalar function of time

Vi(x(t))

® |f the function is designed such that: [z(t) — equilibrium] < [V (z(t)) — 0].
Then we can study V' (z(t)) as function of time ¢ to infer stability of the state
trajectory in R”.
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Sign Definite Functions

Assume that 0 € D C R"

® g: D — Ris called positive semidefinite (PSD) on D if g(0) = 0 and
g(x) >0,Yx e D
- For quadratic function: g(x) = 2™ Pz: [g is PSD] < [P is a PSD matrix|

® g: D — Ris called positive definite (PD) on D if g(0) = 0 and
g(x) > 0,¥x € D\ {0}
- Similarly, if g(z) = 2T Pz is quadratic, then [g is PD] < [P is a PD matrix]

® g is negative semidefinite (NSD) if —g is PSD

® g:R"™ — Ris radically unbounded if g(z) — oo as ||z|| — o
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Lyapunov Stability Theorem

[Lyapunov Theorem]: Let D C R™ be a set containing an open neighborhood of the
origin. If there exists a C* function V : D — R such that

V is PD (3)
V(z) 2 VV(z)" f(z) is NSD (4)

then the origin is stable. If in addition,
V(z) 2 VvV (z)" f(z)is ND (5)

then the origin is asymptotically stable.

Remarks:

® A PD C' function satisfying (4) or (5) will be called a Lyapunov function

® Under condition (5), if V' is also radially unbounded
= globally asymptotically stable
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Proof of Lyapunov Stability Theorem (1/3)

Main idea:

Lyapunov Theorem Advanced Control for Robotics Wei Zhang (SUSTech) 20/ 36



Proof of Lyapunov Stability Theorem (2/3)

Sketch of proof of Lyapunov stability theorem:

® First show stability under condition (4):

Define sublevel set: Q = {z € R" : V(z ) b}. Condition (4) implies V' (z(t))
nonincreasing along system trajectory = If 2(0) € Qs, then z(t) € Q, Vt.

Given arbitrary € > 0, if we can find §,b such that B(0,d) C Q, C B(0,€). Then
the Lyapunov stability conditions are satisfied. Below is to show how we can find
such b and 4.

V' is continuous = m = min| ;= V() exists (due to Weierstrass theorem). In
addition, V is PD = m > 0. Therefore, if we choose b € (0, m), then
Qy, € B(0,¢).

V(z) is continuous at origin = for any b > 0, there exists § > 0 such that
|[V(z) = V(0)] = V(z) < b,Vx € B(0,0). This implies that B(0,5) C Q.
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Proof of Lyapunov Stability Theorem (3/3)

® Second, show asymptotic stability under condition (5):

We know V' (z(t)) decreases monotonically as ¢ — oo and V (z(t)) > 0, Vt.
Therefore, ¢ = limy_, o V(x(t)) exists. So it suffices to show ¢ = 0. Let us use a
contradiction argument.

Suppose ¢ # 0. Then ¢ > 0. Therefore, z(t) ¢ Q. = {x € R" : V() < ¢}, Vt.
We can choose 3 > 0 such that B(0, 3) C €. (due to continuitiy of V' at 0).

Now let @ = —maxg<|z|<e V(x). Since V is ND, then a > 0

V(z(t)) = V(z(0)) + fot V(z(s))ds < V(x(0)) — a -t < 0 for sufficiently large .
= contradiction!
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Exponential Lyapunov Function

Definition 3 (Exponential Lyapunov Function).

V : D — R is called an Exponential Lyapunov Function (ELF) on D C R™ if
k1, ko, k3, > 0 such that

Fallzf|* < V(z) < ko]
LV (z) < —ksV(x)

Theorem 1 (ELF Theorem).
If system (2) has an ELF, then it is exponentially stable.
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Stability Analysis Examples (1/2)
Example 1.

— 2

T1 = —21+ 22 + X122
To =] — X2 —T] — Th
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Stability Analysis Examples (2/2)

Example 2.
jil = —x1 +T122
9.32 = —XT2

® Can we find a simple quadratic Lyapunov function? First try: V(z) = 2% + 3

® In fact, the system does not have any (global) polynomial Lyapunov function. But
it is GAS with a Lyapunov function V'(z) = In(1 + %) + 3.
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e Lyapunov Stability of Linear Systems
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Stability of Linear Systems

Consider autonomous linear system: & = f(z) = Ax.

® Recall solution to the linear system: x(t) = etz(0)
® Only possible equilibrium is origin z =0

® Fact: Origin asympt. stable < Re();) <0 for all eigenvalues A; of A

® Discrete time system: z(k + 1) = Axz(k) is asymp. stable iff eig(A) inside
unit circle
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Lyapunov Function of Linear Systems

e Consider a quadratic Lyapunov function candidate: V(z) = 27 Pz, with
P e R
-VisPD=P>0
- L;V isND =
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Stability Conditions for Linear Systems

Theorem 2 (Stability Conditions for Linear System).

For an autonomous Linear system & = Ax. The following statements are equivalent.

® System is (globally) asymptotically stable
® System is (globally) exponentially stable

® Re()\;) < 0 for all eigenvalues \; of A

® System has a quadratic Lyapunov function

® For any symmetric Q) > 0, there exists a symmetric P > 0 that solves the following
Lyapunov equation:
PA+ATP=-Q

and V(z) = x* Px is a Lyapunov function of the system.
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When There is a Lyapunov Function?

® Converse Lyapunov Theorem for Asymptotic Stability

origin asymptotically stable; V is continuuos and PD on R4
f is locally Lipschitz on D = dVst.{ LV isND on Ra
with region of attraction Ra V(z) = 0o asz — ORa

® Converse Lyapunov Theorem for Exponential Stability

= Jdan ELF V on D

origin exponentially stable on D;
fiscC?

® Proofs are involved especially for the converse theorem for asymptotic
stability

® IMPORTANT: proofs of converse theorems often assume the knowledge of
system solution and hence are not constructive.
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e Extension to Discrete-Time System
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What about Discrete Time Systems?

® So far, all our definitions, results, examples are given using continuous time
dynamical system models.

® All of them have discrete-time counterparts. The ideas and conclusions are
the "same” (in spirit)

® For example, given autonomous discrete-time system: x(k 4+ 1) = f(x(k))
with £(0) = 0 (origin is an equilibrium).
- Rate of change of a function V(z) along system trajectory can be defined as:

ApV(x) £ V(f(2) = V(x)
- Asymptotically stable requires:
VisPD and AfV is ND

- Exponentially stable requires:

ki||z||* < V(z) < ko||z]|® and AfV(z) < —ksV(z)
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Concluding Remarks

We have learned different notions of internal stability, e.g. stability in
Lyapunov sense, asymptotic stability, globally asymptotic stability (G.A.S),
exponential stability, globally exponential stability (G.E.S)

Sufficient condition to ensure stability is often the existence of a properly
defined Lyapunov function

Key requirements for a Lyapunov function:

- positive definite and is zero at the system equilibrium
- decrease along system trajectory

For linear system: G.A.S & G.E.S < Existence of a quadratic Lyapunov function

The definitions and results in this lecture have sometimes been stated in
simplified forms to facilitate presentation. More general versions can be
found in standard textbooks on nonlinear systems

Next Lecture: Semidefinite Programming and computational stability
analysis
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