MEE5114 Advanced Control for Robotics Lecture 10: Basics of Stability Analysis

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

This lecture introduces basic concepts and results on Lyapunov stability of nonlinear systems.

- [Background](#page-2-0)
- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

Outline

• [Background](#page-2-0)

- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

What is Stability Analysis?

- system asymptotic behavior (not too much about transient)
- ability to return to the desired asymptotic behavior (not just convergence)

General ODE Models for Dynamical Systems

\n- ODE:
$$
\dot{x} = f(x, u)
$$
, with $x(0) = x_0$ \n
	\n- $x \in \mathcal{X} \subseteq \mathbb{R}^n$: state
	\n- $u \in \mathcal{U} \subseteq \mathbb{R}^m$: control input
	\n- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$: (time-invariant) vector field
	\n\n

- System output $y = g(x, u)$
- Control law: $\mu : \mathcal{X} \to \mathcal{U}$
- Closed-loop dynamics under μ : $\dot{x} = f(x, \mu(x))$
- Autonomous system:

$$
\dot{x} = f(x), \text{ with } x(0) = x_0 \tag{1}
$$

Example: Pendulum

• Pendulum with driving force: $\ddot{\theta} = \frac{-\rho}{M l^2} \dot{\theta} + \frac{\cos \theta}{M l} u + \frac{g}{l} \sin \theta$ \ddot{a} + single \ddot{a} ²θ

Examples: Adaptive Control

• Closed-loop dynamics under adaptive control:

$$
\begin{cases} \dot{y} = y + u \\ u = -ky, \dot{k} = y^2 \end{cases}
$$

Equilibrium Point of Dynamical Systems

Definition 1 (Equilibrium Point).

A state x^* is an *equilibrium point* of system (1) if once $x(t)=x^*$, it remains equal to x^* at all future time.

- Mathematically: $f(x^*) = 0$
- E.g undamped pendulum with no driving force:

Invariant Set of Dynamical Systems

Definition 2 (Invariant Set).

A set E is an *invariant set* of system (1) if every trajectory which starts from a point in E remains in E at all future time.

- Mathematically: If $x(t_0) \in E$, then $x(t) \in E$, $\forall t \geq t_0$
- E.g: closed-loop dynamics under adaptive control:

$$
\begin{cases} \dot{y} = y + u \\ u = -ky, \dot{k} = y^2 \end{cases}
$$

Outline

• [Background](#page-2-0)

- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

Lyapunov Stability Definitions (1/2)

Consider a time-invariant autonomous (with no control) nonlinear system:

$$
\dot{x} = f(x)
$$
 with I.C. $x(0) = x_0$ (2)

- Assumptions: (i) f Lipschitz continuous; (ii) origin is an isolated equilibrium $f(0) = 0$
- Stability Definitions: The equilibrium $x = 0$ is called
	- stable in the sense of Lyapunov, if

 $\forall \epsilon > 0, \exists \delta > 0$, s.t. $||x(0)|| \leq \delta \Rightarrow ||x(t)|| \leq \epsilon, \forall t \geq 0$

Lyapunov Stability Definitions (2/2)

- asymptotically stable if it is stable and δ can be chosen so that

 $||x(0)|| < δ$ ⇒ $x(t)$ → 0 as $t \to \infty$

- exponentially stable if there exist positive constants δ , λ , c such that

 $||x(t)|| \le c||x(0)||e^{-\lambda t}, \quad \forall ||x(0)|| \le \delta$

- globally asymptotically/exponentially stable if the above conditions holds for all $\delta > 0$

• Region of Attraction: $R_A \triangleq \{x \in \mathbb{R}^n :$ whenever $x(0) = x$, then $x(t) \to 0\}$

Stability Examples using 2D Phase Portrait (1/2)

• Undamped pendulum with no driving

• Closed-loop dynamics under adaptive control:

$$
\begin{cases} \dot{y} = y + u \\ u = -ky, \dot{k} = y^2 \end{cases}
$$

Stability Examples using 2D Phase Portrait (2/2)

Does attractiveness implies stable in Lyapunov sense?

• Answer is NO. e.g.:
$$
\begin{cases} \dot{x}_1 = x_1^2 - x_2^2 \\ \dot{x}_2 = 2x_1x_2 \end{cases}
$$

- By inspection of its vector field, we see that $x(t) \to 0$ for all $x(0) \in \mathbb{R}^2$
- However, there is no δ -ball satisfying the Lyapunov stability condition

Outline

- [Background](#page-2-0)
- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

How to verify stability of a system? $(1/2)$

- Find explicit solution of the ODE $x(t)$ and check stability definitions
	- typically not possible for nonlinear systems

• Numerical simulations of ODE do not provide stability guarantees and offer limited insights

• Need to determine stability without explicitly solving the ODE

• Preferably, analysis only depends on the vector field

How to verify stability of a system? $(2/2)$

• The most powerful tool is: Lyapunov function

 \bullet State trajectory $x(t)$ governed by complex dynamics in \mathbb{R}^n

• Lyapunov function $V:\mathbb{R}^n\to\mathbb{R}$ maps $x(t)$ to a scalar function of time $V(x(t))$

• If the function is designed such that: $[x(t) \rightarrow \text{equilibrium}] \Leftrightarrow [V(x(t)) \rightarrow 0].$ Then we can study $V(x(t))$ as function of time t to infer stability of the state trajectory in \mathbb{R}^n .

Sign Definite Functions

Assume that $0 \in D \subseteq \mathbb{R}^n$

- $g: D \to \mathbb{R}$ is called positive semidefinite (PSD) on D if $g(0) = 0$ and $q(x) > 0, \forall x \in D$
	- For quadratic function: $g(x) = x^T P x$: $[g$ is PSD] \Leftrightarrow [P is a PSD matrix]
- $q: D \to \mathbb{R}$ is called positive definite (PD) on D if $q(0) = 0$ and $q(x) > 0, \forall x \in D \setminus \{0\}$
	- Similarly, if $g(x) = x^T P x$ is quadratic, then $[g$ is PD] \Leftrightarrow $[P$ is a PD matrix]
- q is negative semidefinite (NSD) if $-q$ is PSD
- $g: \mathbb{R}^n \to \mathbb{R}$ is radically unbounded if $g(x) \to \infty$ as $||x|| \to \infty$

Lyapunov Stability Theorem

[Lyapunov Theorem]: Let $D \subset \mathbb{R}^n$ be a set containing an open neighborhood of the origin. If there exists a \mathcal{C}^1 function $V: D \to \mathbb{R}$ such that

$$
V \text{ is PD} \tag{3}
$$

$$
\dot{V}(x) \triangleq \nabla V(x)^T f(x) \text{ is NSD} \tag{4}
$$

then the origin is stable. If in addition,

$$
\dot{V}(x) \triangleq \nabla V(x)^T f(x) \text{ is ND}
$$
\n(5)

then the origin is asymptotically stable.

Remarks:

- A PD C^1 function satisfying [\(4\)](#page-18-0) or [\(5\)](#page-18-1) will be called a Lyapunov function
- Under condition [\(5\)](#page-18-1), if V is also radially unbounded \Rightarrow globally asymptotically stable

Proof of Lyapunov Stability Theorem (1/3)

Main idea:

Proof of Lyapunov Stability Theorem (2/3)

Sketch of proof of Lyapunov stability theorem:

- First show stability under condition [\(4\)](#page-18-0):
	- Define sublevel set: $\Omega_b = \{x \in \mathbb{R}^n : V(x) \leq b\}$. Condition [\(4\)](#page-18-0) implies $V(x(t))$ nonincreasing along system trajectory \Rightarrow If $x(0) \in \Omega_b$, then $x(t) \in \Omega_b$, $\forall t$.
	- Given arbitrary $\epsilon > 0$, if we can find δ , b such that $B(0,\delta) \subset \Omega_b \subset B(0,\epsilon)$. Then the Lyapunov stability conditions are satisfied. Below is to show how we can find such b and δ .
	- V is continuous $\Rightarrow m = \min_{\|x\|=\epsilon} V(x)$ exists (due to Weierstrass theorem). In addition, V is PD \Rightarrow $m > 0$. Therefore, if we choose $b \in (0, m)$, then $\Omega_b \subseteq B(0,\epsilon).$
	- $V(x)$ is continuous at origin \Rightarrow for any $b > 0$, there exists $\delta > 0$ such that $|V(x) - V(0)| = V(x) < b, \forall x \in B(0, \delta)$. This implies that $B(0, \delta) \subseteq \Omega_b$.

Proof of Lyapunov Stability Theorem (3/3)

- Second, show asymptotic stability under condition [\(5\)](#page-18-1):
	- We know $V(x(t))$ decreases monotonically as $t \to \infty$ and $V(x(t)) \geq 0$, $\forall t$. Therefore, $c = \lim_{t\to\infty} V(x(t))$ exists. So it suffices to show $c = 0$. Let us use a contradiction argument.

- Suppose $c \neq 0$. Then $c > 0$. Therefore, $x(t) \notin \Omega_c = \{x \in \mathbb{R}^n : V(x) \leq c\}, \forall t$. We can choose $\beta > 0$ such that $B(0, \beta) \subset \Omega_c$ (due to continuitiy of V at 0).

- Now let
$$
a = -\max_{\beta \le ||x|| \le \epsilon} \dot{V}(x)
$$
. Since V is ND, then $a > 0$

- $V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(s))ds \le V(x(0)) - a \cdot t < 0$ for sufficiently large t. ⇒ contradiction!

Exponential Lyapunov Function

Definition 3 (Exponential Lyapunov Function).

 $V: D \to \mathbb{R}$ is called an Exponential Lyapunov Function (ELF) on $D \subset \mathbb{R}^n$ if $\exists k_1, k_2, k_3, \alpha > 0$ such that

> $\int k_1 ||x||^{\alpha} \leq V(x) \leq k_2 ||x||^{\alpha}$ $\mathcal{L}_f V(x) \leq -k_3 V(x)$

Theorem 1 (ELF Theorem).

If system [\(2\)](#page-10-0) has an ELF, then it is exponentially stable.

Stability Analysis Examples (1/2)

Example 1. $\int \dot{x}_1 = -x_1 + x_2 + x_1x_2$ $\dot{x}_2 = x_1 - x_2 - x_1^2 - x_2^3$ Try $V(x) = ||x||^2$

Stability Analysis Examples (2/2)

Example 2.

 $\int \dot{x}_1 = -x_1 + x_1x_2$ $\dot{x}_2 = -x_2$

 $\bullet\,$ Can we find a simple quadratic Lyapunov function? First try: $\,V(x)=x_1^2+x_2^2$

• In fact, the system does not have any (global) polynomial Lyapunov function. But it is GAS with a Lyapunov function $V(x) = \ln(1+x_1^2) + x_2^2$.

Outline

- [Background](#page-2-0)
- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

Stability of Linear Systems

Consider autonomous linear system: $\dot{x} = f(x) = Ax$.

- Recall solution to the linear system: $x(t) = e^{At}x(0)$
- Only possible equilibrium is origin $x = 0$
- Fact: Origin asympt. stable \Leftrightarrow $Re(\lambda_i) < 0$ for all eigenvalues λ_i of A

• Discrete time system: $x(k + 1) = Ax(k)$ is asymp. stable iff eig(A) inside unit circle

Lyapunov Function of Linear Systems

- $\bullet\,$ Consider a quadratic Lyapunov function candidate: $\,V(x)=x^TPx$, with $P \in \mathbb{R}^{n \times n}$
	- $\overline{}$ V is PD \Rightarrow P \succ 0
	- $\mathcal{L}_f V$ is ND \Rightarrow

Stability Conditions for Linear Systems

Theorem 2 (Stability Conditions for Linear System).

For an autonomous Linear system $\dot{x} = Ax$. The following statements are equivalent.

- System is (globally) asymptotically stable
- System is (globally) exponentially stable
- $Re(\lambda_i)$ < 0 for all eigenvalues λ_i of A
- System has a quadratic Lyapunov function
- For any symmetric $Q \succ 0$, there exists a symmetric $P \succ 0$ that solves the following Lyapunov equation:

$$
PA + A^T P = -Q
$$

and $V(x) = x^T P x$ is a Lyapunov function of the system.

Outline

- [Background](#page-2-0)
- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

When There is a Lyapunov Function?

• Converse Lyapunov Theorem for Asymptotic Stability

 $\sqrt{ }$ \int \mathbf{I} origin asymptotically stable; f is locally Lipschitz on D with region of attraction R_A $\Rightarrow \exists V$ s.t. $\sqrt{ }$ \int \mathbf{I} V is continuuos and PD on R_A $\mathcal{L}_f V$ is ND on R_A $V(x) \to \infty$ as $x \to \partial R_A$

• Converse Lyapunov Theorem for Exponential Stability

 \int origin exponentially stable on D ; *f* is C^1 is C^1

- Proofs are involved especially for the converse theorem for asymptotic stability
- IMPORTANT: proofs of converse theorems often assume the knowledge of system solution and hence are not constructive.

Outline

- [Background](#page-2-0)
- [Lyapunov Stability Definitions](#page-9-0)
- [Lyapunov Stability Theorem](#page-14-0)
- [Lyapunov Stability of Linear Systems](#page-25-0)
- [Converse Lyapunov Function](#page-29-0)
- [Extension to Discrete-Time System](#page-31-0)

What about Discrete Time Systems?

- So far, all our definitions, results, examples are given using continuous time dynamical system models.
- All of them have discrete-time counterparts. The ideas and conclusions are the "same" (in spirit)
- For example, given autonomous discrete-time system: $x(k+1) = f(x(k))$ with $f(0) = 0$ (origin is an equilibrium).
	- Rate of change of a function $V(x)$ along system trajectory can be defined as:

$$
\Delta_f V(x) \triangleq V(f(x)) - V(x)
$$

- Asymptotically stable requires:

V is PD and
$$
\Delta_f V
$$
 is ND

- Exponentially stable requires:

$$
k_1||x||^{\alpha} \le V(x) \le k_2||x||^{\alpha} \quad \text{ and} \quad \Delta_f V(x) \le -k_3V(x)
$$

- · · · · · · · · · · · ·

Concluding Remarks

- We have learned different notions of internal stability, e.g. stability in Lyapunov sense, asymptotic stability, globally asymptotic stability (G.A.S), exponential stability, globally exponential stability (G.E.S)
- Sufficient condition to ensure stability is often the existence of a properly defined Lyapunov function
- Key requirements for a Lyapunov function:
	- positive definite and is zero at the system equilibrium
	- decrease along system trajectory
- For linear system: G.A.S \Leftrightarrow G.E.S \Leftrightarrow Existence of a quadratic Lyapunov function
- The definitions and results in this lecture have sometimes been stated in simplified forms to facilitate presentation. More general versions can be found in standard textbooks on nonlinear systems
- Next Lecture: Semidefinite Programming and computational stability analysis

More Discussions

•

More Discussions

•