MEE5114 Advanced Control for Robotics Lecture 11: Basics of Optimization

Prof. Wei Zhang

SUSTech Insitute of Robotics
Department of Mechanical and Energy Engineering
Southern University of Science and Technology, Shenzhen, China

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Motivation

- Optimization is arguably the most important tool for modern engineering
- Robotics
 - Differential Inverse Kinematics
 - Dynamics
 - Motion planning
 - Whole-body control: formulated as a quadratic program
 - SLAM:
 - Perception
- Machine Learning
 - Linear regression
 - Support vector machine:
 - Deep learning
- other domains
 - Check system stability: SDP
 - Compressive sensing
 - Fourier transform: least square problem
- Roughly speaking, most engineering problems (finding a better design, ensure certain properties of the solution, develop an algorithm), can be formulated as optimization/optimal control problems.

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Real Symmetric Matrices

• S^n : set of real symmetric matrices

• All eigenvalues are real

• There exists a full set of orthogonal eigenvectors

• Spectral decomposition: If $A \in \mathcal{S}^n$, then $A = Q\Lambda Q^T$, where Λ diagonal and Q is unitary.

Positive Semidefinite Matrices (1/3)

- $A \in \mathcal{S}^n$ is called *positive semidefinite (p.s.d.)*, denoted by $A \succeq 0$, if $x^T Ax \geq 0$, $\forall x \in \mathbb{R}^n$
- $A \in \mathcal{S}^n$ is called *positive definite* (p.d.), denoted by $A \succ 0$, if $x^T A x > 0$ for all nonzero $x \in \mathbb{R}^n$
- \mathcal{S}^n_+ : set of all p.s.d. (symmetric) matrices
- \mathcal{S}^n_{++} : set of all p.d. (symmetric) matrices
- p.s.d. or p.d. matrices can also be defined for non-symmetric matrices.

e.g.:
$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

- We assume p.s.d. and p.d. are symmetric (unless otherwise noted)
- Notation: $A \succeq B$ (resp. $A \succ B$) means $A B \in \mathcal{S}^n_+$ (resp. $A B \in \mathcal{S}^n_{++}$)

Positive Semidefinite Matrices (2/3)

- Other equivalent definitions for symmetric p.s.d. matrices:
 - All $2^n 1$ principal minors of A are nonnegative
 - All eigs of A are nonnegative
 - There exists a factorization $\boldsymbol{A} = \boldsymbol{B}^T \boldsymbol{B}$
- Other equivalent definitions for p.d. matrices:
 - All n leading principal minors of A are positive
 - All eigs of A are strictly positive
 - There exists a factorization $A = B^T B$ with B square and nonsingular.

Positive Semidefinite Matrices (3/3)

- Useful facts:
 - If T nonsingular, $A \succ 0 \Leftrightarrow T^TAT \succ 0$; and $A \succeq 0 \Leftrightarrow T^TAT \succeq 0$

- Inner product on $\mathbb{R}^{m \times n}$: $< A, B > \triangleq tr(A^T B) \triangleq A \bullet B$.

- For $A, B \in \mathcal{S}^n_+$, $tr(AB) \ge 0$

Positive Semidefinite Matrices (4/1)

- For any symmetric $A \in \mathcal{S}^n$,

$$\lambda_{\min}(A) \geq \mu \Leftrightarrow A \succeq \mu I \quad \text{ and } \quad \lambda_{\max}(A) \leq \beta \Leftrightarrow A \preceq \beta I$$

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Affine Sets and Functions (1/3)

- Linear mapping: f(x+y)=f(x)+f(y) and $f(\alpha x)=\alpha x$, for any x,y in some vector space, and $\alpha\in\mathbb{R}$
 - f(x) = Ax, $x \in \mathbb{R}^3$, $A \in SO(3)$

- $f[x] = \int x(\tau)d\tau$, for all integrable function $x(\cdot)$
- E(x) expection of a random variable/vector x
- $f(x) = \operatorname{tr}(x), x \in \mathbb{R}^{n \times n}$

Affine Sets and Functions (2/3)

• Affine mapping: f(x) is an affine mapping of x if $g(x) \triangleq f(x) - f(x_0)$ is a linear mapping for some fixed x_0

• Finite-dimension representation of affine function: f(x) = Ax + b

• Homogeneous representation in \mathbb{R}^n :

$$\begin{split} f(x) &= Ax + b &\iff & \tilde{f}(\tilde{x}) = \tilde{A}\tilde{x}, \\ \text{with } \tilde{A} &= \left[\begin{array}{cc} A & b \\ 0 & 1 \end{array} \right], \tilde{x} = \left[\begin{array}{cc} x \\ 1 \end{array} \right] \end{split}$$

Linear and affine are often used interchangeably

Affine Sets and Functions (3/1)

• Linear/affine sets: $\{x: f(x) \leq 0\}$ for affine mapping f

- Line/hyperplane: $a^T x = b$
- Half space: $a^T x \leq b$

- Polyhedron: $Hx \leq h$

- For matrix variable $X \in \mathbb{R}^{n \times n}$, $\operatorname{tr}(AX) \leq 0$ for given constant matrix $A \in \mathbb{R}^{n \times n}$ is a halfspace in $\mathbb{R}^{n \times n}$

Quadratic Sets and Functions

- Quadratic functions in \mathbb{R}^n : $f(x) = x^T A x + b^T x + c$
- Quadratic functions (homogeneous form): $f(x) = x^T A x$

- $A \in \mathcal{S}_+ \Leftrightarrow f(x) \ge 0, \forall x \in \mathbb{R}^n$

- Quadratic sets: $\{x:\in \mathbb{R}^n: f(x)\leq 0\}$ for some quadratic function f e.g.: Ball:
 - e.g.: Ellipsoid:

Convex Set

• Convex Set: A set S is convex if

$$x_1, x_2 \in S \implies \alpha x_1 + (1 - \alpha)x_2 \in S, \forall \alpha \in [0, 1]$$

• Convex combination of x_1, \ldots, x_k :

$$\left\{\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_kx_k:\alpha_i\geq 0, \text{ and } \sum_i\alpha_i=1\right\}$$

• Convex hull: $\overline{co}\{S\}$ set of all convex combinations of points in S

Cone

• A set S is called a *cone* if $\lambda > 0$, $x \in S \Rightarrow \lambda x \in S$.

• Conic combination of x_1 and x_2 : $x = \alpha_1 x_1 + \alpha_2 x_2$ with $\alpha_1, \alpha_2 \ge 0$

- Convex cone:
 - 1. a cone that is convex
 - 2. equivalently, a set that contains all the conic combinations of points in the set

Positive Semidefinite Cone

• The set of positive semidefinite matrices (i.e. S^n_+) is a convex cone and is referred to as the *positive semidefinite (PSD) cone*

• Recall that if $A, B \in \mathcal{S}^n_+$, then $tr(AB) \ge 0$. This indicates that the cone \mathcal{S}^n_+ is acute.

Operations that Preserve Convexity (1/1)

- Intersection of possibly infinite number of convex sets:
 - e.g.: polyhedron:
 - e.g.: PSD cone:
- Affine mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ (i.e. f(x) = Ax + b)
 - $f(X)=\{f(x):x\in X\}$ is convex whenever $X\subseteq\mathbb{R}^n$ is convex e.g.: Ellipsoid: $E_1=\{x\in\mathbb{R}^n:(x-x_c)^TP(x-x_c)\leq 1\}$ or equivalently $E_2=\{x_c+Au:\|u\|_2\leq 1\}$
 - $f^{-1}(Y)=\{x\in\mathbb{R}^n:f(x)\in Y\}$ is convex whenever $Y\subseteq\mathbb{R}^m$ is convex e.g.: $\{Ax\leq b\}=f^{-1}(\mathbb{R}^n_+)$, where \mathbb{R}^n_+ is nonnegative orthant

Convex Function

Consider a finite dimensional vector space \mathcal{X} . Let $\mathcal{D} \subset \mathcal{X}$ be convex.

Definition 1 (Convex Function).

A function $f:\mathcal{D}\to\mathbb{R}$ is called convex if

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2), \forall x_1, x_2 \in \mathcal{D}, \forall \alpha \in [0, 1]$$

- $f: \mathcal{D} \to \mathbb{R}$ is called strictly convex if $f(\alpha x_1 + (1-\alpha)x_2) < \alpha f(x_1) + (1-\alpha)f(x_2), \forall x_1 \neq x_2 \in \mathcal{D}, \forall \alpha \in [0,1]$
- ullet $f:\mathcal{D}
 ightarrow \mathbb{R}$ is called concave if -f is convex

How to Check a Function is Convex?

- Directly use definition
- First-order condition: If f is differentiable over an open set that contains \mathcal{D} , then f is convex over \mathcal{D} iff

$$f(z) \ge f(x) + \nabla f(x)^T (z - x), \forall x, z \in \mathcal{D}$$

• Second-order condition: Suppose f is twicely differentiable over an open set that contains \mathcal{D} , then f is convex over \mathcal{D} iff

$$\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathcal{D}$$

Many other conditions, tricks,...

Examples of Convex Functions

- In general, affine functions are both convex and concave
 - e.g.: $f(x) = a^T x + b$, for $x \in \mathbb{R}^n$

- e.g.:
$$f(X) = tr(A^TX) + c = \sum_{i=1}^m \sum_{j=1}^n A_{ij}X_{ij} + c$$
, for $X \in \mathbb{R}^{m \times n}$

• Quadratic functions: $f(x) = x^T Q x + b^T x + c$ is convex iff $Q \succeq 0$

All norms are convex

- e.g. in
$$\mathbb{R}^n$$
: $f(x) = ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$; $f(x) = ||x||_\infty = \max_k |x_k|$

- e.g. in
$$\mathbb{R}^{m \times n}$$
: $f(X) = ||X||_2 = \sigma_{\max}(X)$

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Nonlinear Optimization Problems

Nonlinear Optimization:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

- decision variable $x \in \mathbb{R}^n$, domain \mathcal{D} , referred to as *primal problem*
- optimal value p^*
- is called a convex optimization problem if f_0, \ldots, f_m are convex and h_1, \ldots, h_q are affine
- typically convex optimization can be solved efficiently

Nonlinear Optimization Problems

Lagrangian

Associated Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^q \to \mathbb{R}$

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{q} \nu_i h_i(x)$$

· weighted sum of objective and constraints functions

• λ_i : Lagrangian multiplier associated with $f_i(x) \leq 0$

• ν_i : Lagrangian multiplier associated with $h_i(x)=0$

Lagrange Dual Problems (1/2)

Lagrange dual function: $g: \mathbb{R}^m \times \mathbb{R}^q : \to \mathbb{R}$

$$\begin{split} g(\lambda,\nu) &= \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) \\ &= \inf_{x \in \mathcal{D}} \left\{ f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^q \nu_i h_i(x) \right\} \end{split}$$

- g is concave, can be $-\infty$ for some λ, ν
- Lower bound property: If $\lambda \succeq 0$ (elementwise), then $g(\lambda, \nu) \leq p^*$

Lagrange Dual Problems (2/1)

Lagrange Dual Problem:

$$\begin{cases} \text{maximize}: & g(\lambda, \nu) \\ \text{subject to}: & \lambda \succeq 0 \end{cases}$$

- ullet Find the best lower bound on p^* using the Lagrange dual function
- a convex optimization problem even when the primal is nonconvex
- optimal value denoted d*
- (λ, ν) is called **dual feasible** if $\lambda \succeq 0$ and $(\lambda, \nu) \in \mathbf{dom}(g)$
- \bullet Often simplified by making the implicit constraint $(\lambda,\nu)\in\operatorname{dom}(g)$ explicit

Duality Theorems

- Weak Duality: $d^* \leq p^*$
 - always hold (for convex and nonconvex problems)
 - can be used to find nontrivial lower bounds for difficult problems
- Strong Duality: $d^* = p^*$
 - not true in general, but typically holds for convex problems
 - conditions that guarantee strong duality in convex problems are called constraint qualifications
 - Slater's constraint qualification: Primal is strictly feasible

General Optimality Conditions (1/3)

For general optimization problem:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

General optimality condition:

strong duality and (x^*, λ^*, ν^*) is primal-dual optimal \Leftrightarrow

•
$$x^* = \arg\min_x L(x, \lambda^*, \nu^*)$$

(Lagrange optimality)

•
$$\lambda_i^* f_i(x^*) = 0$$
 for all i

(Complementarity)

•
$$f_i(x^*) \le 0 \ h_j(x^*) = 0$$
, for all i, j

(primal feasibility)

•
$$\lambda_i^* \geq 0$$
 for all i

(dual feasibility)

General Optimality Conditions (2/3)

Proof of Necessity

• Assume x^* and (λ^*, ν^*) are primal-dual optimal slns with zero duality gap,

$$f_0(x^*) = g(\lambda^*, \nu^*)$$

$$= \min_{x \in \mathcal{D}} \left(f_0(x) + \sum_i \lambda_i^* f_i(x) + \sum_j \nu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) + \sum_j \nu_j^* h_j(x^*)$$

$$\leq f_0(x^*)$$

- Therefore, all inequalities are actually equalities
- \bullet Replacing the first inequality with equality $\Rightarrow x^* = \mathrm{argmin}_x L(x, \lambda^*, \nu^*)$
- \bullet Replacing the second inequality with equality \Rightarrow complementarity condition

General Optimality Conditions (3/1)

Proof of Sufficiency

• Assume (x^*, λ^*, ν^*) satisfies the optimality conditions:

$$g(\lambda^*, \nu^*) = f(x^*) + \sum_{i} \lambda_i^* f_i(x^*) + \sum_{j} \nu_j^* h_j(x^*)$$

= $f(x^*)$

 The first equality is by Lagrange optimality, and the 2nd equality is due to complementarity

• Therefore, the duality gap is zero, and (x^*, λ^*, ν^*) is the primal dual optimal solution

KKT Conditions

For **convex** optimization problem:

$$\begin{cases} \text{minimize:} & f_0(x) \\ \text{subject to:} & f_i(x) \leq 0, i = 1, \dots m \\ & h_i(x) = 0, i = 1, \dots, q \end{cases}$$

Suppose duality gap is zero, then (x^*, λ^*, ν^*) is primal-dual optimal if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

- $\frac{\partial L}{\partial x}(x,\lambda^*,\nu^*)=0$ (Stationarity)
- $\lambda_i^* f_i(x^*) = 0$ for all i (Complementarity)
- $f_i(x^*) \le 0$ $h_j(x^*) = 0$, for all i, j (primal feasibility)
- $\lambda_i^* \geq 0$ for all i (dual feasibility)

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Linear Program: Primal and Dual Formulations

 $\bullet \ \, \textbf{Primal Formulation:} \; \begin{cases} \text{minimize:} & c^T x \\ \text{subject to:} & Ax = b \\ & x \geq 0 \end{cases}$

• Its Dual: $\begin{cases} \text{maximize:} & -b^T \nu \\ \text{subject to:} & A^T \nu + c \ge 0 \end{cases}$

Outline

- Motivation
- Some Linear Algebra
- Sets and Functions
- Short Introduction to Optimization
- Linear Program
- Quadratic Program

Unconstrained Quadratic Program: Least Squares

- minimize: $J(x) = \frac{1}{2}x^TQx + q^Tx + q_0$
- Problem is convex iff $Q \succeq 0$
- \bullet When J is convex, it can be written as: $J(x) = \|Q^{\frac{1}{2}}x y\|^2 + c$

• KKT condition:

• Optimal solution:

Equality Constrained Quadratic Program

- Standard form: $\begin{cases} \min_x & J(x) = x^TQx + q^Tx + q_0 \\ \text{subject to:} & Hx = h \end{cases}$
- $\bullet \;$ The problem is convex if $Q \succeq 0$
- KKT Condition:

Optimal Solution:

General Quadratic Program

• Standard form: $\begin{cases} \text{minimize:} & J(x) = x^TQx + q^Tx + q_0 \\ \text{subject to:} & Ax \leq b \end{cases}$

Dual problem:

More Discussions

•

More Discussions

•