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Motivation

• Optimization is arguably the most important tool for modern engineering
• Robotics

- Differential Inverse Kinematics
- Dynamics
- Motion planning
- Whole-body control: formulated as a quadratic program
- SLAM:
- Perception

• Machine Learning
- Linear regression
- Support vector machine:
- Deep learning

• other domains
- Check system stability: SDP
- Compressive sensing
- Fourier transform: least square problem

• Roughly speaking, most engineering problems (finding a better design, ensure
certain properties of the solution, develop an algorithm), can be formulated
as optimization/optimal control problems.
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Real Symmetric Matrices

• Sn: set of real symmetric matrices

• All eigenvalues are real

• There exists a full set of orthogonal eigenvectors

• Spectral decomposition: If A ∈ Sn, then A = QΛQT , where Λ diagonal and
Q is unitary.
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Positive Semidefinite Matrices (1/3)

• A ∈ Sn is called positive semidefinite (p.s.d.), denoted by A ⪰ 0, if
xTAx ≥ 0, ∀x ∈ Rn

• A ∈ Sn is called positive definite (p.d.), denoted by A ≻ 0, if xTAx > 0 for
all nonzero x ∈ Rn

• Sn
+: set of all p.s.d. (symmetric) matrices

• Sn
++: set of all p.d. (symmetric) matrices

• p.s.d. or p.d. matrices can also be defined for non-symmetric matrices.

e.g.:

[
1 1
−1 1

]

• We assume p.s.d. and p.d. are symmetric (unless otherwise noted)

• Notation: A ⪰ B (resp. A ≻ B ) means A−B ∈ Sn
+ (resp. A−B ∈ Sn

++)
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Positive Semidefinite Matrices (2/3)
• Other equivalent definitions for symmetric p.s.d. matrices:

- All 2n − 1 principal minors of A are nonnegative

- All eigs of A are nonnegative

- There exists a factorization A = BTB

• Other equivalent definitions for p.d. matrices:

- All n leading principal minors of A are positive

- All eigs of A are strictly positive

- There exists a factorization A = BTB with B square and nonsingular.
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Positive Semidefinite Matrices (3/3)
• Useful facts:

- If T nonsingular, A ≻ 0 ⇔ TTAT ≻ 0; and A ⪰ 0 ⇔ TTAT ⪰ 0

- Inner product on Rm×n: < A,B >≜ tr(ATB) ≜ A •B.

- For A,B ∈ Sn
+, tr(AB) ≥ 0
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Positive Semidefinite Matrices (4/1)

- For any symmetric A ∈ Sn,

λmin(A) ≥ µ ⇔ A ⪰ µI and λmax(A) ≤ β ⇔ A ⪯ βI
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Affine Sets and Functions (1/3)

• Linear mapping: f(x+ y) = f(x) + f(y) and f(αx) = αx, for any x, y in
some vector space, and α ∈ R

- f(x) = Ax, x ∈ R3, A ∈ SO(3)

- f [x] =
∫
x(τ)dτ , for all integrable function x(·)

- E(x) expection of a random variable/vector x

- f(x) = tr(x), x ∈ Rn×n
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Affine Sets and Functions (2/3)
• Affine mapping: f(x) is an affine mapping of x if g(x) ≜ f(x)− f(x0) is a

linear mapping for some fixed x0

• Finite-dimension representation of affine function: f(x) = Ax+ b

• Homogeneous representation in Rn:

f(x) = Ax+ b ⇔ f̃(x̃) = Ãx̃,

with Ã =

[
A b
0 1

]
, x̃ =

[
x
1

]
• Linear and affine are often used interchangeably
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Affine Sets and Functions (3/1)
• Linear/affine sets: {x : f(x) ≤ 0} for affine mapping f

- Line/hyperplane: aTx = b

- Half space: aTx ≤ b

- Polyhedron: Hx ≤ h

- For matrix variable X ∈ Rn×n, tr(AX) ≤ 0 for given constant matrix A ∈ Rn×n

is a halfspace in Rn×n
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Quadratic Sets and Functions

• Quadratic functions in Rn: f(x) = xTAx+ bTx+ c

• Quadratic functions (homogeneous form): f(x) = xTAx

- A ∈ S+ ⇔ f(x) ≥ 0,∀x ∈ Rn

• Quadratic sets: {x :∈ Rn : f(x) ≤ 0} for some quadratic function f

- e.g.: Ball:

- e.g.: Ellipsoid:
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Convex Set

• Convex Set: A set S is convex if

x1, x2 ∈ S ⇒ αx1 + (1− α)x2 ∈ S, ∀α ∈ [0, 1]

• Convex combination of x1, . . . , xk:{
α1x1 + α2x2 + · · ·+ αkxk : αi ≥ 0, and

∑
i

αi = 1

}

• Convex hull: co {S} set of all convex combinations of points in S
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Cone

• A set S is called a cone if λ > 0, x ∈ S ⇒ λx ∈ S.

• Conic combination of x1 and x2:
x = α1x1 + α2x2 with α1, α2 ≥ 0

• Convex cone:

1. a cone that is convex

2. equivalently, a set that contains all the conic combinations of points in the set
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Positive Semidefinite Cone

• The set of positive semidefinite matrices (i.e. Sn
+) is a convex cone and is

referred to as the positive semidefinite (PSD) cone

• Recall that if A,B ∈ Sn
+, then tr(AB) ≥ 0. This indicates that the cone Sn

+

is acute.
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Operations that Preserve Convexity (1/1)

• Intersection of possibly infinite number of convex sets:

- e.g.: polyhedron:

- e.g.: PSD cone:

• Affine mapping f : Rn → Rm (i.e. f(x) = Ax+ b)

- f(X) = {f(x) : x ∈ X} is convex whenever X ⊆ Rn is convex
e.g.: Ellipsoid: E1 = {x ∈ Rn : (x− xc)

TP (x− xc) ≤ 1} or equivalently
E2 = {xc +Au : ∥u∥2 ≤ 1}

- f−1(Y ) = {x ∈ Rn : f(x) ∈ Y } is convex whenever Y ⊆ Rm is convex
e.g.: {Ax ≤ b} = f−1(Rn

+), where Rn
+ is nonnegative orthant
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Convex Function

Consider a finite dimensional vector space X . Let D ⊂ X be convex.

Definition 1 (Convex Function).

A function f : D → R is called convex if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2),∀x1, x2 ∈ D,∀α ∈ [0, 1]

• f : D → R is called strictly convex if
f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2),∀x1 ̸= x2 ∈ D,∀α ∈ [0, 1]

• f : D → R is called concave if −f is convex
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How to Check a Function is Convex?

• Directly use definition

• First-order condition: If f is differentiable over an open set that contains D,
then f is convex over D iff

f(z) ≥ f(x) +∇f(x)T (z − x),∀x, z ∈ D

• Second-order condition: Suppose f is twicely differentiable over an open set
that contains D, then f is convex over D iff

∇2f(x) ⪰ 0, ∀x ∈ D

• Many other conditions, tricks,...
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Examples of Convex Functions

• In general, affine functions are both convex and concave

- e.g.: f(x) = aTx+ b, for x ∈ Rn

- e.g.: f(X) = tr(ATX) + c =
∑m

i=1

∑n
j=1 AijXij + c, for X ∈ Rm×n

• Quadratic functions: f(x) = xTQx+ bTx+ c is convex iff Q ⪰ 0

• All norms are convex

- e.g. in Rn: f(x) = ∥x∥p =
(∑n

i=1 |xi|p
)1/p

; f(x) = ∥x∥∞ = maxk |xk|

- e.g. in Rm×n: f(X) = ∥X∥2 = σmax(X)
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Nonlinear Optimization Problems

Nonlinear Optimization:
minimize: f0(x)

subject to: fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , q

• decision variable x ∈ Rn, domain D, referred to as primal problem

• optimal value p∗

• is called a convex optimization problem if f0, . . . , fm are convex and
h1, . . . , hq are affine

• typically convex optimization can be solved efficiently
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Nonlinear Optimization Problems
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Lagrangian

Associated Lagrangian: L : D × Rm × Rq → R

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

• weighted sum of objective and constraints functions

• λi: Lagrangian multiplier associated with fi(x) ≤ 0

• νi: Lagrangian multiplier associated with hi(x) = 0

Basic Optimization Advanced Control for Robotics Wei Zhang (SUSTech) 25 / 39



Lagrange Dual Problems (1/2)

Lagrange dual function: g : Rm × Rq :→ R

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

{
f0(x) +

m∑
i=1

λifi(x) +

q∑
i=1

νihi(x)

}

• g is concave, can be −∞ for some λ, ν

• Lower bound property: If λ ⪰ 0 (elementwise), then g(λ, ν) ≤ p∗
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Lagrange Dual Problems (2/1)

Lagrange Dual Problem: {
maximize : g(λ, ν)

subject to: λ ⪰ 0

• Find the best lower bound on p∗ using the Lagrange dual function

• a convex optimization problem even when the primal is nonconvex

• optimal value denoted d∗

• (λ, ν) is called dual feasible if λ ⪰ 0 and (λ, ν) ∈ dom(g)

• Often simplified by making the implicit constraint (λ, ν) ∈ dom(g) explicit
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Duality Theorems

• Weak Duality: d∗ ≤ p∗

- always hold (for convex and nonconvex problems)

- can be used to find nontrivial lower bounds for difficult problems

• Strong Duality: d∗ = p∗

- not true in general, but typically holds for convex problems

- conditions that guarantee strong duality in convex problems are called constraint
qualifications

- Slater’s constraint qualification: Primal is strictly feasible
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General Optimality Conditions (1/3)

For general optimization problem:
minimize: f0(x)

subject to: fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , q

General optimality condition:

strong duality and (x∗, λ∗, ν∗) is primal-dual optimal ⇔

• x∗ = argminx L(x, λ
∗, ν∗) (Lagrange optimality)

• λ∗
i fi(x

∗) = 0 for all i (Complementarity)

• fi(x
∗) ≤ 0 hj(x

∗) = 0, for all i, j (primal feasibility)

• λ∗
i ≥ 0 for all i (dual feasibility)
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General Optimality Conditions (2/3)

Proof of Necessity

• Assume x∗ and (λ∗, ν∗) are primal-dual optimal slns with zero duality gap,

f0(x
∗) = g(λ∗, ν∗)

= min
x∈D

f0(x) +
∑
i

λ∗
i fi(x) +

∑
j

ν∗j hj(x)


≤ f0(x

∗) +
∑
i

λ∗
i fi(x

∗) +
∑
j

ν∗j hj(x
∗)

≤ f0(x
∗)

• Therefore, all inequalities are actually equalities

• Replacing the first inequality with equality ⇒ x∗ = argminxL(x, λ
∗, ν∗)

• Replacing the second inequality with equality ⇒ complementarity condition
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General Optimality Conditions (3/1)

Proof of Sufficiency

• Assume (x∗, λ∗, ν∗) satisfies the optimality conditions:

g(λ∗, ν∗) = f(x∗) +
∑
i

λ∗
i fi(x

∗) +
∑
j

ν∗j hj(x
∗)

= f(x∗)

• The first equality is by Lagrange optimality, and the 2nd equality is due to
complementarity

• Therefore, the duality gap is zero, and (x∗, λ∗, ν∗) is the primal dual optimal
solution
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KKT Conditions

For convex optimization problem:
minimize: f0(x)

subject to: fi(x) ≤ 0, i = 1, . . .m

hi(x) = 0, i = 1, . . . , q

Suppose duality gap is zero, then (x∗, λ∗, ν∗) is primal-dual optimal if and only if
it satisfies the Karush-Kuhn-Tucker (KKT) conditions

• ∂L
∂x (x, λ

∗, ν∗) = 0 (Stationarity)

• λ∗
i fi(x

∗) = 0 for all i (Complementarity)

• fi(x
∗) ≤ 0 hj(x

∗) = 0, for all i, j (primal feasibility)

• λ∗
i ≥ 0 for all i (dual feasibility)
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Linear Program: Primal and Dual Formulations

• Primal Formulation:


minimize: cTx

subject to: Ax = b

x ≥ 0

• Its Dual:

{
maximize: −bT ν

subject to: AT ν + c ≥ 0
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Unconstrained Quadratic Program: Least Squares

• minimize: J(x) = 1
2x

TQx+ qTx+ q0
• Problem is convex iff Q ⪰ 0

• When J is convex, it can be written as: J(x) = ∥Q
1
2x− y∥2 + c

• KKT condition:

• Optimal solution:
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Equality Constrained Quadratic Program

• Standard form:

{
minx J(x) = xTQx+ qTx+ q0

subject to: Hx = h

• The problem is convex if Q ⪰ 0

• KKT Condition:

• Optimal Solution:
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General Quadratic Program

• Standard form:

{
minimize: J(x) = xTQx+ qTx+ q0

subject to: Ax ≤ b

• Dual problem:
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