MEE5114 Advanced Control for Robotics Lecture 11: Basics of Optimization

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

- [Motivation](#page-2-0)
- [Some Linear Algebra](#page-3-0)
- [Sets and Functions](#page-8-0)
- [Short Introduction to Optimization](#page-20-0)
- [Linear Program](#page-31-0)
- [Quadratic Program](#page-33-0)

Motivation

- Optimization is arguably the most important tool for modern engineering
- Robotics
	- Differential Inverse Kinematics
	- Dynamics
	- Motion planning
	- Whole-body control: formulated as a quadratic program
	- $-$ SLAM \cdot
	- Perception
- Machine Learning
	- Linear regression
	- Support vector machine:
	- Deep learning
- other domains
	- Check system stability: SDP
	- Compressive sensing
	- Fourier transform: least square problem
- Roughly speaking, most engineering problems (finding a better design, ensure certain properties of the solution, develop an algorithm), can be formulated as optimization/optimal control problems.

Outline

- [Motivation](#page-2-0)
- [Some Linear Algebra](#page-3-0)
- [Sets and Functions](#page-8-0)
- [Short Introduction to Optimization](#page-20-0)
- [Linear Program](#page-31-0)
- [Quadratic Program](#page-33-0)

Real Symmetric Matrices

 \bullet S^n : set of real symmetric matrices

• All eigenvalues are real

• There exists a full set of orthogonal eigenvectors

 $\bullet\,$ Spectral decomposition: If $A\in{\mathcal S}^n$, then $A=Q\Lambda Q^T$, where Λ diagonal and Q is unitary.

Positive Semidefinite Matrices (1/3)

- $A \in \mathcal{S}^n$ is called *positive semidefinite (p.s.d.)*, denoted by $A \succeq 0$, if $x^T A x \geq 0, \,\forall x \in \mathbb{R}^n$
- \bullet $A\in\mathcal{S}^n$ is called *positive definite (p.d.)*, denoted by $A\succ 0$, if $x^TAx>0$ for all nonzero $x \in \mathbb{R}^n$
- \bullet S_+^n : set of all p.s.d. (symmetric) matrices
- \bullet \mathcal{S}_{++}^n : set of all p.d. (symmetric) matrices
- p.s.d. or p.d. matrices can also be defined for non-symmetric matrices. e.g.: $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

- We assume p.s.d. and p.d. are symmetric (unless otherwise noted)
- Notation: $A \succeq B$ (resp. $A \succ B$) means $A B \in \mathcal{S}_{+}^{n}$ (resp. $A B \in \mathcal{S}_{++}^{n}$)

Positive Semidefinite Matrices (2/3)

- Other equivalent definitions for symmetric p.s.d. matrices:
	- All $2^n 1$ principal minors of A are nonnegative
	- All eigs of A are nonnegative
	- There exists a factorization $A=B^TB$
- Other equivalent definitions for p.d. matrices:
	- All n leading principal minors of A are positive
	- All eigs of A are strictly positive
	- There exists a factorization $A=B^TB$ with B square and nonsingular.

Positive Semidefinite Matrices (3/3)

- Useful facts:
	- $-$ If T nonsingular, $A \succ 0 \Leftrightarrow T^T A T \succ 0$; and $A \succeq 0 \Leftrightarrow T^T A T \succeq 0$

- Inner product on $\mathbb{R}^{m \times n} \colon <\!, B> \triangleq tr(A^TB) \triangleq A \bullet B.$

- For $A, B \in \mathcal{S}_{+}^{n}$, $tr(AB) \geq 0$

Positive Semidefinite Matrices (4/1)

- For any symmetric $A \in \mathcal{S}^n$,

 $\lambda_{\min}(A) \geq \mu \Leftrightarrow A \succeq \mu I$ and $\lambda_{\max}(A) \leq \beta \Leftrightarrow A \leq \beta I$

Outline

- [Motivation](#page-2-0)
- [Some Linear Algebra](#page-3-0)
- [Sets and Functions](#page-8-0)
- [Short Introduction to Optimization](#page-20-0)
- [Linear Program](#page-31-0)
- [Quadratic Program](#page-33-0)

Affine Sets and Functions (1/3)

• Linear mapping: $f(x + y) = f(x) + f(y)$ and $f(\alpha x) = \alpha x$, for any x, y in some vector space, and $\alpha \in \mathbb{R}$

-
$$
f(x) = Ax, x \in \mathbb{R}^3, A \in SO(3)
$$

- $f[x] = \int x(\tau) d\tau$, for all integrable function $x(\cdot)$
- $E(x)$ expection of a random variable/vector x

-
$$
f(x) = \text{tr}(x), x \in R^{n \times n}
$$

Affine Sets and Functions (2/3)

• Affine mapping: $f(x)$ is an affine mapping of x if $g(x) \triangleq f(x) - f(x_0)$ is a linear mapping for some fixed x_0

• Finite-dimension representation of affine function: $f(x) = Ax + b$

 \bullet Homogeneous representation in \mathbb{R}^n :

$$
f(x) = Ax + b \Leftrightarrow \tilde{f}(\tilde{x}) = \tilde{A}\tilde{x},
$$

with $\tilde{A} = \begin{bmatrix} A & b \\ 0 & 1 \end{bmatrix}$, $\tilde{x} = \begin{bmatrix} x \\ 1 \end{bmatrix}$

• Linear and affine are often used interchangeably

Affine Sets and Functions (3/1)

- Linear/affine sets: $\{x : f(x) \le 0\}$ for affine mapping f
	- Line/hyperplane: $a^T x = b$
	- Half space: $a^T x \leq b$
	- Polyhedron: $Hx \leq h$
	- For matrix variable $X \in \mathbb{R}^{n \times n}$, $\mathrm{tr}(AX) \leq 0$ for given constant matrix $A \in \mathbb{R}^{n \times n}$ is a halfspace in $\mathbb{R}^{n \times n}$

Quadratic Sets and Functions

- Quadratic functions in \mathbb{R}^n : $f(x) = x^T A x + b^T x + c$
- $\bullet\,$ Quadratic functions (homogeneous form): $f(x)=x^TAx$
	- $A \in \mathcal{S}_+ \Leftrightarrow f(x) \geq 0, \forall x \in \mathbb{R}^n$
- Quadratic sets: $\{x:\in \mathbb{R}^n: f(x)\leq 0\}$ for some quadratic function f - e.g.: Ball:

- e.g.: Ellipsoid:

Convex Set

• Convex Set: A set S is convex if

$$
x_1, x_2 \in S \implies \alpha x_1 + (1 - \alpha)x_2 \in S, \forall \alpha \in [0, 1]
$$

• Convex combination of x_1, \ldots, x_k :

$$
\left\{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k : \alpha_i \ge 0, \text{ and } \sum_i \alpha_i = 1\right\}
$$

• Convex hull: $\overline{co} \{S\}$ set of all convex combinations of points in S

Cone

• A set S is called a cone if $\lambda > 0$, $x \in S \Rightarrow \lambda x \in S$.

• Conic combination of x_1 and x_2 : $x = \alpha_1 x_1 + \alpha_2 x_2$ with $\alpha_1, \alpha_2 \geq 0$

- Convex cone:
	- 1. a cone that is convex
	- 2. equivalently, a set that contains all the conic combinations of points in the set

Positive Semidefinite Cone

 $\bullet\,$ The set of positive semidefinite matrices (i.e. $\,\mathcal{S}^n_+)$ is a convex cone and is referred to as the positive semidefinite (PSD) cone

• Recall that if $A, B \in \mathcal{S}_{+}^n$, then $tr(AB) \geq 0$. This indicates that the cone \mathcal{S}_{+}^n is acute.

Operations that Preserve Convexity $(1/1)$

- Intersection of possibly infinite number of convex sets:
	- e.g.: polyhedron:
	- e.g.: PSD cone:
- Affine mapping $f : \mathbb{R}^n \to \mathbb{R}^m$ (i.e. $f(x) = Ax + b$)
	- $f(X) = \{f(x) : x \in X\}$ is convex whenever $X \subseteq \mathbb{R}^n$ is convex e.g.: Ellipsoid: $E_1 = \{x \in \mathbb{R}^n : (x-x_c)^T P(x-x_c) \leq 1\}$ or equivalently $E_2 = \{x_c + Au : ||u||_2 \leq 1\}$
	- $f^{-1}(Y) = \{x \in \mathbb{R}^n : f(x) \in Y\}$ is convex whenever $Y \subseteq \mathbb{R}^m$ is convex e.g.: $\{Ax\leq b\}=f^{-1}(\mathbb{R}^n_+)$, where \mathbb{R}^n_+ is nonnegative orthant

Convex Function

Consider a finite dimensional vector space X. Let $\mathcal{D} \subset \mathcal{X}$ be convex.

Definition 1 (Convex Function).

A function $f: \mathcal{D} \to \mathbb{R}$ is called convex if

 $f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2), \forall x_1, x_2 \in \mathcal{D}, \forall \alpha \in [0, 1]$

• $f: \mathcal{D} \to \mathbb{R}$ is called strictly convex if $f(\alpha x_1 + (1 - \alpha)x_2) < \alpha f(x_1) + (1 - \alpha)f(x_2), \forall x_1 \neq x_2 \in \mathcal{D}, \forall \alpha \in [0, 1]$

•
$$
f: \mathcal{D} \to \mathbb{R}
$$
 is called concave if $-f$ is convex

How to Check a Function is Convex?

- Directly use definition
- First-order condition: If f is differentiable over an open set that contains \mathcal{D} , then f is convex over D iff

$$
f(z) \ge f(x) + \nabla f(x)^T (z - x), \forall x, z \in \mathcal{D}
$$

• Second-order condition: Suppose f is twicely differentiable over an open set that contains D , then f is convex over D iff

$$
\nabla^2 f(x) \succeq 0, \quad \forall x \in \mathcal{D}
$$

• Many other conditions, tricks,...

Examples of Convex Functions

• In general, affine functions are both convex and concave

- e.g.:
$$
f(x) = a^T x + b
$$
, for $x \in \mathbb{R}^n$

- e.g.:
$$
f(X) = tr(A^T X) + c = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + c
$$
, for $X \in \mathbb{R}^{m \times n}$

 \bullet Quadratic functions: $f(x) = x^TQx + b^Tx + c$ is convex iff $Q \succeq 0$

- All norms are convex
	- e.g. in \mathbb{R}^n : $f(x) = ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$; $f(x) = ||x||_{\infty} = \max_k |x_k|$

- e.g. in
$$
\mathbb{R}^{m \times n}
$$
: $f(X) = ||X||_2 = \sigma_{\max}(X)$

Outline

- [Motivation](#page-2-0)
- [Some Linear Algebra](#page-3-0)
- [Sets and Functions](#page-8-0)
- [Short Introduction to Optimization](#page-20-0)
- [Linear Program](#page-31-0)
- [Quadratic Program](#page-33-0)

Nonlinear Optimization Problems

Nonlinear Optimization:

$$
\begin{cases}\n\text{minimize:} & f_0(x) \\
\text{subject to:} & f_i(x) \le 0, i = 1, \dots, m \\
& h_i(x) = 0, i = 1, \dots, q\n\end{cases}
$$

- decision variable $x \in \mathbb{R}^n$, domain \mathcal{D} , referred to as primal problem
- optimal value p^*
- is called a convex optimization problem if f_0, \ldots, f_m are convex and h_1, \ldots, h_q are affine
- typically convex optimization can be solved efficiently

Nonlinear Optimization Problems

Lagrangian

Associated Lagrangian: $L: \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^q \to \mathbb{R}$

$$
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{q} \nu_i h_i(x)
$$

• weighted sum of objective and constraints functions

- $\bullet \; \lambda_i$: Lagrangian multiplier associated with $f_i(x) \leq 0$
- \bullet ν_i : Lagrangian multiplier associated with $h_i(x)=0$

Lagrange Dual Problems (1/2)

Lagrange dual function: $g : \mathbb{R}^m \times \mathbb{R}^q : \rightarrow \mathbb{R}$

$$
g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)
$$

=
$$
\inf_{x \in \mathcal{D}} \left\{ f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^q \nu_i h_i(x) \right\}
$$

• g is concave, can be
$$
-\infty
$$
 for some λ, ν

• Lower bound property: If $\lambda \succeq 0$ (elementwise), then $g(\lambda, \nu) \leq p^*$

Lagrange Dual Problems (2/1)

Lagrange Dual Problem:

 \int maximize : $g(\lambda, \nu)$ subject to: $\quad \lambda \succeq 0$

- Find the best lower bound on p^* using the Lagrange dual function
- a convex optimization problem even when the primal is nonconvex
- optimal value denoted d^*
- (λ, ν) is called **dual feasible** if $\lambda \succeq 0$ and $(\lambda, \nu) \in \textbf{dom}(q)$
- Often simplified by making the implicit constraint $(\lambda, \nu) \in \text{dom}(q)$ explicit

Duality Theorems

- Weak Duality: $d^* \leq p^*$
	- always hold (for convex and nonconvex problems)
	- can be used to find nontrivial lower bounds for difficult problems
- Strong Duality: $d^* = p^*$
	- not true in general, but typically holds for convex problems
	- conditions that guarantee strong duality in convex problems are called constraint qualifications
	- Slater's constraint qualification: Primal is strictly feasible

General Optimality Conditions (1/3)

For general optimization problem:

$$
\begin{cases}\n\text{minimize:} & f_0(x) \\
\text{subject to:} & f_i(x) \le 0, i = 1, \dots, m \\
& h_i(x) = 0, i = 1, \dots, q\n\end{cases}
$$

General optimality condition:

strong duality and (x^*,λ^*,ν^*) is primal-dual optimal \Leftrightarrow

General Optimality Conditions (2/3)

Proof of Necessity

 \bullet Assume x^* and (λ^*,ν^*) are primal-dual optimal slns with zero duality gap,

$$
f_0(x^*) = g(\lambda^*, \nu^*)
$$

= $\min_{x \in \mathcal{D}} \left(f_0(x) + \sum_i \lambda_i^* f_i(x) + \sum_j \nu_j^* h_j(x) \right)$
 $\leq f_0(x^*) + \sum_i \lambda_i^* f_i(x^*) + \sum_j \nu_j^* h_j(x^*)$
 $\leq f_0(x^*)$

- Therefore, all inequalities are actually equalities
- Replacing the first inequality with equality $\Rightarrow x^* = \mathrm{argmin}_x L(x, \lambda^*, \nu^*)$
- Replacing the second inequality with equality \Rightarrow complementarity condition

General Optimality Conditions (3/1)

Proof of Sufficiency

• Assume (x^*, λ^*, ν^*) satisfies the optimality conditions:

$$
g(\lambda^*, \nu^*) = f(x^*) + \sum_i \lambda_i^* f_i(x^*) + \sum_j \nu_j^* h_j(x^*)
$$

= $f(x^*)$

- The first equality is by Lagrange optimality, and the 2nd equality is due to complementarity
- Therefore, the duality gap is zero, and (x^*, λ^*, ν^*) is the primal dual optimal solution

KKT Conditions

For convex optimization problem:

$$
\begin{cases}\n\text{minimize:} & f_0(x) \\
\text{subject to:} & f_i(x) \le 0, i = 1, \dots, m \\
& h_i(x) = 0, i = 1, \dots, q\n\end{cases}
$$

Suppose duality gap is zero, then (x^*,λ^*,ν^*) is primal-dual optimal if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

\n- \n
$$
\frac{\partial L}{\partial x}(x, \lambda^*, \nu^*) = 0
$$
\n
\n- \n $\lambda_i^* f_i(x^*) = 0$ for all i \n
\n- \n $f_i(x^*) \leq 0$ $h_j(x^*) = 0$, for all i, j \n
\n- \n $\lambda_i^* \geq 0$ for all i \n
\n- \n $\lambda_i^* \geq 0$ for all i \n
\n- \n $\lambda_i^* \geq 0$ for all i \n
\n
\n\n (Complementarity)\n

Outline

- [Motivation](#page-2-0)
- [Some Linear Algebra](#page-3-0)
- [Sets and Functions](#page-8-0)
- [Short Introduction to Optimization](#page-20-0)
- [Linear Program](#page-31-0)
- [Quadratic Program](#page-33-0)

Linear Program: Primal and Dual Formulations

\n- **Priminal Formulation:**
$$
\begin{cases} \text{minimize:} & c^T x \\ \text{subject to:} & Ax = b \\ & x \geq 0 \end{cases}
$$
\n

• Its Dual:
$$
\begin{cases} \text{maximize:} & -b^T \nu \\ \text{subject to:} & A^T \nu + c \ge 0 \end{cases}
$$

Outline

- [Motivation](#page-2-0)
- [Some Linear Algebra](#page-3-0)
- [Sets and Functions](#page-8-0)
- [Short Introduction to Optimization](#page-20-0)
- [Linear Program](#page-31-0)
- [Quadratic Program](#page-33-0)

Unconstrained Quadratic Program: Least Squares

- minimize: $J(x) = \frac{1}{2}x^TQx + q^Tx + q_0$
- Problem is convex iff $Q \succeq 0$
- $\bullet\,$ When J is convex, it can be written as: $J(x)=\|Q^\tfrac{1}{2}x-y\|^2+c$

• KKT condition:

• Optimal solution:

Equality Constrained Quadratic Program

- Standard form: $\begin{cases} \min_x & J(x) = x^T Q x + q^T x + q_0 \end{cases}$ subject to: $Hx = h$
- The problem is convex if $Q \succeq 0$
- KKT Condition:

• Optimal Solution:

General Quadratic Program

- Standard form: $\begin{cases} \text{minimize:} & J(x) = x^T Q x + q^T x + q_0 \end{cases}$ subject to: $Ax \leq b$
- Dual problem:

More Discussions

•

More Discussions

•