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Linear Matrix Inequalities (1/4)

• Standard form: Given symmetric matrices F0, . . . , Fm ∈ Sn,

F (x) = F0 + x1F1 + · · ·+ xmFm ⪰ 0

is called a Linear Matrix Inequality in x = (x1, . . . , xm)T ∈ Rm

• The function F (x) is affine in x

• The constraint set {x ∈ Rn : F (x) ⪰ 0} is nonlinear but convex
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Linear Matrix Inequalities (2/4)
Example 1 (LMI in Standard Form).

Characterize the constraint set: F (x) =

[
x1 + x2 x2 + 1
x2 + 1 x3

]
⪰ 0
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Linear Matrix Inequalities (3/4)
• General Linear Matrix Inequalities (LMI)

- Let X be a finite-dimensional real vector space.

- F : X → Sn is an affine mapping from X to n× n symmetric matrices

- Then F (X) ⪰ 0 is called also an LMI in variable X ∈ X

- Translation to standard form: Choose a basis X1, . . . , Xm of X and represent
X = x1X1 + · · ·+ xmXm for any X ∈ X . For a given affine mapping
F : X → Sn, we can define F̂ : Rm → Sn as

F̂ (x) ≜ F (X) = F (0) +

m∑
i=1

xi[F (Xi)− F (0)]

where x is the coordinate of X w.r.t. the basis X1, . . . , Xm.
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Linear Matrix Inequalities (4/4)
Example 2.

Find conditions on matrix P to ensure that V (x) = xTPx is a Lyapunov function
for a linear system ẋ = Ax
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Schur Complement Lemma (1/2)

Lemma 1 (Schur Complement Lemma).

Define M =

[
A B
BT C

]
. The following three sets of inequalities are equivalent.

M ≻ 0 ⇔

{
A ≻ 0

C −BTA−1B ≻ 0
⇔

{
C ≻ 0

A−BC−1BT ≻ 0

• Proof: The lemma follows immediately from the following identities:[
I 0

−BTA−1 I

] [
A B
BT C

] [
I −A−1B
0 I

]
=

[
A 0
0 C −BTA−1B

]
[

I −BC−1

0 I

] [
A B
BT C

] [
I 0

−C−1BT I

]
=

[
A−BC−1BT 0

0 C

]
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Schur Complement Lemma (2/2)
• The proof of Schur complement lemma also reveals more general relations

between the numbers of negative, zero, positive eigenvalues of

- M vs. A and C −BTA−1B

- M vs. C and A−BC−1BT

• Schur complement lemma is a very useful result to transform nonlinear
(quadratic or bilinear) matrix inequalities to linear ones.
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Semidefinite Programming (1/3)

• Semidefinite Programming (SDP) Problem: Optimization problem with
linear objective, and Linear Matrix Inequality and linear equality constraints:

minimize: cTx

subject to: F0 + x1F1 + · · ·+ xmFm ⪰ 0

Ax = b

(1)

• Linear equality constraint in (1) can be eliminated. So essentially SDP can be
viewed as optimizing linear function subject to only LMI constraints.

• SDP is a particular class of convex optimization problem. Global optimal
solution can be found efficiently.

• Optimizing nonlinear but convex cost function subject to LMI constraints is
also a convex optimization that can often be solved efficiently.
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Semidefinite Programming (2/3)

Standard forms of SDP in matrix variable:

• SDP Standard Prime Form:
min
X∈Sn

: fp(X) = C •X

subject to: Ai •X = bi, i = 1, . . . ,m

X ⪰ 0

(2)

• SDP Dual form:  max
y∈Rm

: fd(y) = bT y

subject to:
∑m

i=1 yiAi ⪯ C
(3)

• One can derive the dual from the prime using either standard Lagrange
duality method or more specialized Fenchel duality results

• The dual form (3) is equivalent to (1) (after eliminating the equality
constraint Ax = b in (1))
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Semidefinite Programming (3/3)
• SDP Weak Duality: fp(X) ≥ fd(y) for any primal and dual feasible X

and y

• SDP Strong Duality: fp(X∗) = fd(y
∗) holds under Slater’s condition:

• Many control and optimization problem can be formulated or translated into
SDP problems

• Various computationally difficult optimization problems can be effectively
approximated by SDP problems (SDP relaxation...)

• We will see some examples after introducing an important technique:
S-procedure
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S-Procedure (1/2)

• Many stability/engineering problems require to certify that a given function is
sign-definite over certain subset of the space

• Mathematically, this condition can be stated as follows:

g0(x) ≥ 0 on {x ∈ Rn|g1(x) ≥ 0, . . . , gm(x) ≥ 0} (4)

• Given functions g0, . . . , gm, we want to know whether the condition holds.
Sometimes we may also want to find a g0 satisfying this condition for given
g1, . . . , gm.

• Conservative but useful condition: ∃ PSD functions si(x) s.t.

g0(x)−
∑
i

si(x)gi(x) ≥ 0,∀x ∈ Rn

This is the so-called Generalized S-Procedure
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S-Procedure (2/2)

Now consider an important special case: gi(x) = xTGix, i = 0, 1, ... are quadratic
functions

• Requirement (4) becomes:

∀x ∈ Rn, xTG1x ≥ 0, . . . , xTGkx ≥ 0 ⇒ xTG0x ≥ 0

• Sufficient condition (S-procedure): ∃α1, . . . , αm ≥ 0 with

G0 ⪰ α1G1 + · · ·+ αmGm

• S-Procedure is lossless if m = 1 and ∃x̂ s.t. x̂TG1x̂ > 0 (constraint
qualification)
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Some Examples (1/4)

Example 3 (Eigenvalue Optimization).

Given symmetric matrices A0, A1, . . . , Am. Let S(w) = A0 +
∑

i wiAi. Find
weights {wi}mi=1 to minimize λmax(S(w))
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Some Examples (2/4)
Example 4 (Ellipsoid inequality).

Given R ∈ Sn
++, the set E = {x ∈ Rn : (x− xc)

TR(x− xc) < 1} is an ellipsoid
with center xc. Find the point in E that is the closet to the origin.
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Some Examples (3/4)
Example 5 (Linear Feedback Control Gain Design).

Given a linear control system ẋ = Ax+Bu with linear state feedback u = Kx.
Find K to stabilize the system
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Some Examples (4/4)
Example 6 (Robust Stabiltiy).

Given system ẋ = Ax+ u with uncertain feedback u = g(x). Suppose all we know
is that the feedback law satisfies: ∥g(x)∥2 ≤ β∥x∥2. Find Lyapunov function
V (x) = xTPx to ensure exponential stability.
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Concluding Remarks

• Linear matrix inequalities impose convex constraints

• Semidefinite programming problem: optimize linear cost subject to LMI
constraints

• SDP has broad applications in various engineering fields: signal processing,
networking, communication, control, machine learning, big data...
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