MEE5114 Advanced Control for Robotics

Lecture 12: Semidefinite Programming for Stability Analysis

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

- • [Linear Matrix Inequalities](#page-2-0)
- [Semidefinite Programming Problems](#page-9-0)
- [S-Procedure](#page-13-0)
- [Some Examples](#page-16-0)
- [Conclusion](#page-21-0)

• [Linear Matrix Inequalities](#page-2-0)

- [Semidefinite Programming Problems](#page-9-0)
- [S-Procedure](#page-13-0)
- [Some Examples](#page-16-0)
- [Conclusion](#page-21-0)

Linear Matrix Inequalities (1/4)

• Standard form: Given symmetric matrices $F_0, \ldots, F_m \in \mathcal{S}^n$,

$$
F(x) = F_0 + x_1 F_1 + \dots + x_m F_m \succeq 0
$$

is called a *Linear Matrix Inequality* in $x=(x_1,\ldots,x_m)^T\in\mathbb{R}^m$

• The function $F(x)$ is affine in x

• The constraint set $\{x \in \mathbb{R}^n : F(x) \succeq 0\}$ is nonlinear but convex

Linear Matrix Inequalities (2/4)

Example 1 (LMI in Standard Form).

Characteristic the constraint set:
$$
F(x) = \begin{bmatrix} x_1 + x_2 & x_2 + 1 \ x_2 + 1 & x_3 \end{bmatrix} \succeq 0
$$

Linear Matrix Inequalities (3/4)

- General Linear Matrix Inequalities (LMI)
	- Let X be a finite-dimensional real vector space.
	- $F:\mathcal{X}\rightarrow\mathcal{S}^n$ is an *affine* mapping from $\mathcal X$ to $n\times n$ symmetric matrices
	- Then $F(X) \succeq 0$ is called also an LMI in variable $X \in \mathcal{X}$
	- Translation to standard form: Choose a basis X_1, \ldots, X_m of X and represent $X = x_1X_1 + \cdots + x_mX_m$ for any $X \in \mathcal{X}$. For a given affine mapping $F:\mathcal{X}\rightarrow\mathcal{S}^n$, we can define $\hat{F}:\mathbb{R}^m\rightarrow\mathcal{S}^n$ as

$$
\hat{F}(x) \triangleq F(X) = F(0) + \sum_{i=1}^{m} x_i [F(X_i) - F(0)]
$$

where x is the coordinate of X w.r.t. the basis X_1, \ldots, X_m .

Linear Matrix Inequalities (4/4)

Example 2.

Find conditions on matrix P to ensure that $V(x)=x^TPx$ is a Lyapunov function for a linear system $\dot{x} = Ax$

Schur Complement Lemma (1/2)

Lemma 1 (Schur Complement Lemma).

Define $M = \left[\begin{array}{cc} A & B \ B^T & C \end{array} \right]$ B^T C $\big]$. The following three sets of inequalities are equivalent.

$$
M \succ 0 \quad \Leftrightarrow \quad \begin{cases} A \succ 0 \\ C - B^T A^{-1} B \succ 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} C \succ 0 \\ A - B C^{-1} B^T \succ 0 \end{cases}
$$

• Proof: The lemma follows immediately from the following identities:

$$
\begin{bmatrix} I & 0 \ -B^T A^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \ B^T & C \end{bmatrix} \begin{bmatrix} I & -A^{-1}B \ 0 & I \end{bmatrix} = \begin{bmatrix} A & 0 \ 0 & C - B^T A^{-1}B \end{bmatrix}
$$

$$
\begin{bmatrix} I & -BC^{-1} \ 0 & I \end{bmatrix} \begin{bmatrix} A & B \ B^T & C \end{bmatrix} \begin{bmatrix} I & 0 \ -C^{-1}B^T & I \end{bmatrix} = \begin{bmatrix} A - BC^{-1}B^T & 0 \ 0 & C \end{bmatrix}
$$

Schur Complement Lemma (2/2)

- The proof of Schur complement lemma also reveals more general relations between the numbers of negative, zero, positive eigenvalues of
	- M vs. A and $C B^T A^{-1} B$
	- M vs. C and $A-BC^{-1}B^T$
- Schur complement lemma is a very useful result to transform nonlinear (quadratic or bilinear) matrix inequalities to linear ones.

• [Linear Matrix Inequalities](#page-2-0)

- [Semidefinite Programming Problems](#page-9-0)
- [S-Procedure](#page-13-0)
- [Some Examples](#page-16-0)
- [Conclusion](#page-21-0)

Semidefinite Programming (1/3)

• Semidefinite Programming (SDP) Problem: Optimization problem with linear objective, and Linear Matrix Inequality and linear equality constraints:

$$
\begin{cases}\n\text{minimize:} & c^T x\\ \n\text{subject to:} & F_0 + x_1 F_1 + \dots + x_m F_m \succeq 0\\ \n& Ax = b\n\end{cases} \tag{1}
$$

- Linear equality constraint in [\(1\)](#page-10-0) can be eliminated. So essentially SDP can be viewed as optimizing linear function subject to only LMI constraints.
- SDP is a particular class of convex optimization problem. Global optimal solution can be found efficiently.
- Optimizing nonlinear but convex cost function subject to LMI constraints is also a convex optimization that can often be solved efficiently.

Semidefinite Programming (2/3)

k,

Standard forms of SDP in matrix variable:

• SDP Standard Prime Form:

$$
\begin{cases}\n\min_{X \in S^n} : & f_p(X) = C \bullet X \\
\text{subject to:} & A_i \bullet X = b_i, i = 1, ..., m \\
& X \succeq 0\n\end{cases}
$$
\n(2)

• SDP Dual form:

$$
\begin{cases}\n\max_{y \in \mathbb{R}^m} : & f_d(y) = b^T y \\
\text{subject to:} & \sum_{i=1}^m y_i A_i \preceq C\n\end{cases}
$$
\n(3)

- One can derive the dual from the prime using either standard Lagrange duality method or more specialized Fenchel duality results
- The dual form (3) is equivalent to (1) (after eliminating the equality constraint $Ax = b$ in [\(1\)](#page-10-0))

Semidefinite Programming (3/3)

• SDP Weak Duality: $f_p(X) \ge f_d(y)$ for any primal and dual feasible X and y

• SDP Strong Duality: $f_p(X^*) = f_d(y^*)$ holds under Slater's condition:

- Many control and optimization problem can be formulated or translated into SDP problems
- Various computationally difficult optimization problems can be effectively approximated by SDP problems (SDP relaxation...)
- We will see some examples after introducing an important technique: S-procedure

- • [Linear Matrix Inequalities](#page-2-0)
- [Semidefinite Programming Problems](#page-9-0)
- [S-Procedure](#page-13-0)
- [Some Examples](#page-16-0)
- [Conclusion](#page-21-0)

S-Procedure (1/2)

- Many stability/engineering problems require to certify that a given function is sign-definite over certain subset of the space
- Mathematically, this condition can be stated as follows:

$$
g_0(x) \ge 0
$$
 on $\{x \in \mathbb{R}^n | g_1(x) \ge 0, \ldots, g_m(x) \ge 0\}$ (4)

- Given functions g_0, \ldots, g_m , we want to know whether the condition holds. Sometimes we may also want to find a q_0 satisfying this condition for given g_1, \ldots, g_m .
- Conservative but useful condition: \exists PSD functions $s_i(x)$ s.t.

$$
g_0(x) - \sum_i s_i(x)g_i(x) \ge 0, \forall x \in \mathbb{R}^n
$$

This is the so-called Generalized S-Procedure

S-Procedure (2/2)

Now consider an important special case: $g_i(x) = x^T G_i x, i=0,1,...$ are quadratic functions

• Requirement [\(4\)](#page-14-0) becomes:

$$
\forall x \in \mathbb{R}^n, \quad x^T G_1 x \ge 0, \dots, x^T G_k x \ge 0 \quad \Rightarrow \quad x^T G_0 x \ge 0
$$

• Sufficient condition (S-procedure): $\exists \alpha_1, \ldots, \alpha_m \geq 0$ with

$$
G_0 \succeq \alpha_1 G_1 + \dots + \alpha_m G_m
$$

 $\bullet\,$ S-Procedure is lossless if $m=1$ and $\exists \hat{x}$ s.t. $\hat{x}^TG_1\hat{x}>0$ (constraint qualification)

- • [Linear Matrix Inequalities](#page-2-0)
- [Semidefinite Programming Problems](#page-9-0)
- [S-Procedure](#page-13-0)
- [Some Examples](#page-16-0)
- [Conclusion](#page-21-0)

Some Examples (1/4)

Example 3 (Eigenvalue Optimization).

Given symmetric matrices A_0, A_1, \ldots, A_m . Let $S(w) = A_0 + \sum_i w_i A_i$. Find weights $\{w_i\}_{i=1}^m$ to minimize $\lambda_{\max}(S(w))$

Some Examples (2/4)

Example 4 (Ellipsoid inequality).

Given $R\in\mathcal{S}_{++}^n$, the set $E=\{x\in\mathbb{R}^n: (x-x_c)^TR(x-x_c)<1\}$ is an ellipsoid with center x_c . Find the point in E that is the closet to the origin.

Some Examples (3/4)

Example 5 (Linear Feedback Control Gain Design).

Given a linear control system $\dot{x} = Ax + Bu$ with linear state feedback $u = Kx$. Find K to stabilize the system

Some Examples (4/4)

Example 6 (Robust Stabiltiy).

Given system $\dot{x} = Ax + u$ with uncertain feedback $u = g(x)$. Suppose all we know is that the feedback law satisfies: $\|g(x)\|^2\leq \beta \|x\|^2.$ Find Lyapunov function $V(x) = x^T P x$ to ensure exponential stability.

Concluding Remarks

• Linear matrix inequalities impose convex constraints

• Semidefinite programming problem: optimize linear cost subject to LMI constraints

• SDP has broad applications in various engineering fields: signal processing, networking, communication, control, machine learning, big data...

References

More Discussions

•

More Discussions

•