MEE5114 (Sp22) Advanced Control for Robotics Lecture 2: Rigid Body Configuration and Velocity

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Free Vector

• **Free Vector**: geometric quantity with length and direction

 $\bullet\,$ Given a reference frame, v can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.

$$
\frac{2}{4}
$$

 \bullet υ denotes the physical quantity while $\stackrel{A}{\sim} v$ denote its coordinate wrt frame $\{A\}$.

Frame:
$$
(\hat{M} \times \hat{M}) = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}
$$
 means

\n
$$
\begin{aligned}\n\begin{aligned}\n\hat{M} \cdot \hat{M} &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} & \text{means} \\
A \cdot \hat{M} &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}\n\end{aligned}
$$
\n
$$
\begin{aligned}\nA \cdot \hat{M} &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} & \text{times} \\
\begin{aligned}\n\hat{M} &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} & \text{times} \\
\hat{M} &= \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}\n\end{aligned}
$$

Point

• **Point**: p denotes ^a point in the physical space

 $\bullet\,$ A point p can be represented by a vector from frame origin to p

 \bullet $\ ^{A}p$ denotes the coordinate of a point p wrt frame $\{ {\sf A} \}$

$$
Mp=(\frac{1}{(2p)})
$$
 $3p)$ $3p$ 3

• When left-superscript is not present, it means the physical vector itself or the coordinate of the vector for which the reference frame is clear from thethink in "coordinate-free" way whenever possible
 V_1
 $V_2 = V_1 + V_2$
 V_3 coordinate-free: $V_2 = V_1 + V_2$
 $V_4 = V_3 + V_4$
 $V_5 = 4V_1 + V_2$
 $V_6 = 4V_1 + V_2$
 $V_7 = 4V_1 + V_2$
 $V_8 = 4V_1 + V_2$
 $V_9 = 4V_1 + V_2$ context.

 ℓ .

Cross Product

$$
A\gamma_3 \nless \beta \gamma_1 + \gamma_2
$$

• **Cross product** or **vector product** of ^a [∈] ^R³, ^b [∈] ^R³ is defined as

$$
a \sqrt{b} = \begin{bmatrix} \frac{a_2b_3 - a_3b_2}{a_3b_1 - a_1b_3} \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & -\mathbf{a}_3 & \mathbf{a}_2 \\ \mathbf{a}_3 & \mathbf{0} & -\mathbf{a}_1 \\ \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix}
$$
 (1)

$$
\mathbf{a} = \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \end{bmatrix} \stackrel{\mathbf{a}_1}{\leq} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} \stackrel{\mathbf{a}_2}{\leq} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix} \mathbf{a} \times \mathbf{b}
$$

a

Properties:

- $\|a \times b\| = \|a\| \|b\| \sin(\theta)$
- $a \times b = -b \times a$
- \bullet $a \times a = 0$

Skew symmetric representation

 $A = A^T$

 $\bullet\,$ It can be directly verified from definition that $a\times b=[a]b,$ where

$$
\begin{pmatrix}\n a \\
 a \\
 b \\
 a\n\end{pmatrix}\n\triangleq\n\begin{bmatrix}\n 0 & -a_3 & a_2 \\
 a_3 & 0 & -a_1 \\
 -a_2 & a_1 & 0\n\end{bmatrix}
$$
\n
$$
\bullet a =\n\begin{bmatrix}\n a_1 \\
 a_2 \\
 a_3\n\end{bmatrix}\n\leftrightarrow\n\begin{bmatrix}\n a_1 \\
 a_2 \\
 a_3\n\end{bmatrix}\n\leftrightarrow\n\begin{bmatrix}\n a_1 \\
 a_2 \\
 a_3\n\end{bmatrix}\n\bullet\n\begin{bmatrix}\n a_1 \\
 a_2 \\
 a_3\n\end
$$

Rotation Matrix

- $\bullet\,$ **Frame**: 3 coordinate vectors (unit length) $\hat{x},\hat{y},\hat{z},$ and an origin
	- x $\hat{\mathrm{x}},\hat{\mathrm{y}}$., , ˆ $\hat{\mathrm{z}}$ mutually orthogonal

-
$$
\hat{x} \times \hat{y} = \hat{z}
$$
 \Leftrightarrow (γ and γ), and γ

 \bullet **Rotation Matrix**: specifies orientation of one frame relative to another

$$
{}^{2}\mathcal{L}_{R}
$$
\n
$$
{}^{3}\mathcal{L}_{B}
$$
\n<math display="block</math>

 $\bullet\,$ A valid rotation matrix R satisfies: $\left(\mathsf{i}\right)\,R^T R=I;$ $\left(\mathsf{ii}\right)\,\det(R)=1$

Rigid Body Configuration **Advanced Control for Robotics** Wei Zhang (SUSTech) 7 / 300 Mei Zhang (SUSTECH) 7 / 3

Special Orthogonal Group $A\in$ $50(3)$

- **Special Orthogonal Group**: Space of Rotation Matrices in R $\ ^{n}$ is defined as $SO(n) = \{R \in \mathbb{R}$ $^{n\times n}$: R ${}^TR=$ $= I, \det(R) = 1$
- $\bullet \,\, SO(n)$ is a group. We are primarily interested in $SO(3)$ and $SO(2)$, rotation groups of $\mathbb R$ 3 and $\mathbb R$ 2 , respectively.
- \bullet Group is a set G , together with an operation \bullet , satisfying the following group axioms:
	- Closure: $a\in G, b\in G \Rightarrow a\bullet b\in G$
	- Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c), \, \forall a,b,c \in G$
	- ldentity element: $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G.$
	- Inverse element: For each $a\in G$, there is a $b\in G$ such that $a\bullet b=b\bullet a=e$, where e is the identity element.

Use of Rotation Matrix (1/2)

- \bullet Representing an orientation $^{A}R_{B}$
- $\bullet\,$ Changing the reference frame $^{A}R_{B}$ l

$$
A\nu=\sqrt[nR_{B}\nu| \qquad \qquad \text{``}c_{3}\text{``}c_{4}\text{''} \qquad \text{and} \qquad
$$

$$
- \frac{\text{same physical vector}}{\text{physics}} \nu = \alpha_1 \hat{x}_1 + \alpha_2 \hat{y}_2 + \alpha_3 \hat{z}_3
$$
\n
$$
\nu = \alpha_1 \hat{x}_1 + \alpha_2 \hat{y}_2 + \alpha_3 \hat{z}_3
$$
\n
$$
\nu = \beta_1 \hat{x}_2 + \beta_2 \hat{y}_3 + \beta_3 \hat{z}_3
$$
\n
$$
\nu = \beta_1 \hat{x}_3 + \beta_2 \hat{y}_3 + \beta_3 \hat{z}_3
$$
\n
$$
\nu = \beta_1 \hat{x}_3 + \beta_2 \hat{y}_3 + \beta_3 \hat{z}_3
$$
\n
$$
\nu = \frac{\alpha_1 \hat{x}_1 + \alpha_2 \hat{y}_2 + \alpha_3 \hat{z}_3}{\alpha_1 \hat{x}_1 + \alpha_2 \hat{y}_3 + \alpha_3 \hat{z}_3} = \frac{\beta_1 \hat{x}_2 + \beta_2 \hat{y}_3 + \beta_3 \hat{z}_3}{\beta_1 \hat{y}_3 + \beta_2 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_2 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_2 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_2 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_2 \hat{y}_3 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_3 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_2 \hat{y}_3 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_3 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_2 \hat{y}_3 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_3 + \beta_3 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_3 + \beta_2 \hat{z}_3} = \frac{\alpha_1 \hat{y}_1}{\beta_1 \hat{y}_3 + \beta_2 \hat{z}_3} = \frac{\alpha_1
$$

Use of Rotation Matrix (2/2)

 α_{2}^{2} β α_{3}

• Rotating a vector or a frame $\text{Rot}(\hat{\omega}, \theta)$: will be discussed in next lecture. \bullet "action" verb sperator view

Rigid Body Configuration

Homogeneous Transformation Matrix

 \bullet Homogeneous Transformation Matrix: AT_B

 ${}^{4}P = {}^{4}O_{a} + {}^{4}Re {}^{B}P_{ee}$
 $T \in R^{3}$ ${}^{3}x3$ $T^{e/R^{3}}$

affine relation $A_{\overline{}B} \triangleq \left[\begin{array}{cc} {}^{4}R_{B} {}^{4}o_{B} \\ \hline 0 \end{array}\right] \left(\begin{array}{cc} {}^{4}x\psi & \\ T=(R,\phi) & , \text{configuation of } {}^{18}yselabze \leftrightarrow M \end{array}\right)$

 \bullet Homogeneous coordinates:

Given a point
$$
p \in \mathbb{R}^3
$$
, its homogeneous coordinate is given
\nby $\widetilde{P} = [\widetilde{P}] \in \mathbb{R}^4 \implies \boxed{A\widetilde{P} = A_{\overline{B}} \cdot B\widetilde{P}}$
\nGiven vector γ , its homogeneous coordinate is $\widetilde{V} = \begin{bmatrix} V \\ 0 \end{bmatrix}$
\n $v = P_1 - P_2$ $\widetilde{V} = \widetilde{P_1} - \widetilde{P_2}$

Example of Homogeneous Transformation Matrix

Fixed frame { a }; end effector frame { b }, the camera frame { c }, and the workpiece frame { d }. Suppose $\|p_c - p_b\| = 4$

1. Cameron "Lecation"? Rc, "Po $AT_{c}=(^{\circ}\mathsf{R}_{c},\ ^{\circ}\mathsf{P}_{c})$ $A_{Rc} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, $A_{Rc} = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$ $\sqrt{\hat{x} = 0 \cdot \hat{x}_0 + 1 \cdot \hat{y}_0 + 0 \cdot \hat{z}_0}$ $A_{c} = \begin{bmatrix} 4R & 4R \\ 4R & 1 \end{bmatrix}$ 2. end-effector frame. a_{L} $\overline{}$

$$
CT_{b} = \left[\begin{array}{cccc} 0 & 0 & 0 & -4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]
$$

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/2)

 $\bullet\,$ Consider a rigid body with angular velocity: ω (this is a free vector).

 $V_1 = V_1 + \omega x$ (pq)

• \bullet Suppose the actual rotation axis passes through a point $p;$ Let v_{p} be the velocity of the point p_{\cdot}

Question: A rigid body contains infinitely many points with different velocities. How to parameterize all of their velocities?

- Consider an arbitrary body-fixed point q (means that the point is rigidly attached to the body, and moves with the body), we have:

$$
\underbrace{\overbrace{v_q = v_p + \omega \times (\overrightarrow{pq})}} \tag{3}
$$

- The velocity of an arbitrary body-fixed point depends only on $(\omega,$ ı $\nu_{\not\! s}/\hspace{-0.1cm}/p$) and the location of the point q_{\cdot}

Rigid Body Velocity (2/2)

 $\bullet\,$ Fact: The representation form (3) is independent of the reference point $p.$

 $\bullet\,$ The body can be regarded as translating with a linear velocity v_r , while rotating with angular velocity ω about an axis passing through r

Rigid Body Velocity: Spatial Velocity (Twist)

- **Spatial Velocity (Twist)**: $V_{\theta} = (\omega, v_r)$
	- $\langle\omega\rangle$ angular velocity
	- $\langle v_r \rangle$ velocity of the body-fixed point currently coincides with r
	- For any other body-fixed point $q,$ its velocity is

$$
v_q = v_r + \omega \times (\overrightarrow{rq})
$$

- Twist is ^a "physical" quantity (just like linear or angular velocity)
	- It can be represented in any frame for any chosen reference point \overline{r}
- A rigid body with $\mathcal{V}_r = (\omega, v_r)$ can be "thought of" as translating at $\overline{v_r}$ while r<u>otating with angular ve</u>loc<u>ity ω </u> about a<u>n axis pass</u>ing through r

- This is just one way to interpret the motion.

Spatial Velocity Representation in ^a Reference Frame

- $\bullet\,$ Given frame $\{O\}$ and a spatial velocity ${\cal V}$
- \bullet Choose o (the origin of $\{O\}$) as the reference point to represent the rigid \bullet $\dot{\cup}$ ω body velocity
- \bullet Coordinates for the ${\mathcal V}$ in $\{O\}$: $^O\nu_o = (^O\omega,^O\omega)$
- By default, we assume the origin of the frame is used as the reference point: $^Ov =$ ${}^O\nu_o$

Example of Twist I

Example of Twist II

 b_{Var} $s_{\gamma_{\text{car}}}$ • Example II:

Change Reference Frame for Twist (1/2)

• Given a twist $\mathcal V$, let ${}^A\mathcal V$ and ${}^B\mathcal V$ be their coordinates in frames $\{A\}$ and $\{B\}$

AV = AωAvA , ^B V = BωBvB • They are related by AV =AXBBV Rigid Body Velocity (Twist) Advanced Control for Robotics Wei Zhang (SUSTech) ²¹ / ³⁰

Change Reference Frame for Twist (2/2)
\n
$$
\Rightarrow \frac{F_{1}}{P_{1}} = \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{1}} \end{bmatrix} = \begin{bmatrix} \frac{P_{1}}{P_{1}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} = \begin{bmatrix} \frac{P_{2}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} = \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} = \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} \begin{bmatrix} \frac{P_{2}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} = \begin{bmatrix} R & o \\ \frac{P_{1}}{P_{2}} & R \end{bmatrix}
$$
\n
\n6. If configuration {B} in {A} is $T = (R, p)$, then
\n
$$
\begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} = \begin{bmatrix} R & 0 \\ \frac{P_{1}}{P_{2}} & R \end{bmatrix}
$$
\n
\n6. Then
\n
$$
T = (R, p) \begin{bmatrix} \frac{P_{1}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} \times Z = \begin{bmatrix} R & 0 \\ \frac{P_{2}}{P_{2}} \\ \frac{P_{2}}{P_{2}} \end{bmatrix} = \begin{bmatrix} R & 0 \\ \frac{P_{1}}{P_{2}} & R \end{bmatrix}
$$

Example I Revisited

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Server Motion
\n-
$$
Yelail : linear velocity
$$
 $V = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \frac{||v|| \cdot \sqrt{2}}{\sqrt{2}} = \sqrt{5} \cdot \begin{bmatrix} \frac{1}{15} \\ \frac{2}{15} \end{bmatrix}$
\n- $angular velocity : W = \hat{w} \cdot \hat{g}$
\n $rotatin axis (unit vector)$
\n $vetating by 3t$ $V = (v, \underline{w})$

- $\,q$: any point on the rotation axis
- h: **screw pitch** which defines the ratio of the linear velocity along the screw axis to the angular velocity about the screw axis
- • Theorem (Chasles): Every rigid body motion can be realized by ^a screw motion.

From Screw Motion to Twist

- • $\bullet\,$ Consider a rigid body under a screw motion with screw axis $\{\hat s,h,q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{A\}$ with origin o_A .
- $\mathcal{V}=(\frac{A_{\mathcal{W}},\,A_{\mathcal{V}_{OA}}}{2})$ $\bullet\,$ Find the twist A $A_w = \frac{AG}{S} \dot{g}$

$$
Ar_{V_{\phi_{k}}}=(h\dot{\theta}S^{\phi}\dot{S}+\frac{A}{2}WX(-\frac{A}{2})
$$

$$
=
$$
^{*A*} \hat{S} (*h* $\hat{\theta}$) - *h* $\omega \times \hat{Z}$

• Result: given screw axis $\{\hat{s},h,q\}$ with rotation speed $\dot{\theta}$, the corresponding •twist $\mathcal{V}=(\omega,v)$ is given by D W

$$
\omega = \hat{s}\dot{\theta} \qquad \underline{v} = -\hat{s}\dot{\theta} \times \underline{q} + h\hat{s}\dot{\theta}
$$

.- The result holds as long as all the vectors and the twist are represented in the same reference frame

coordinate-free: / pick 9 as
 V_{0A} V_{B} + $w \times (q^2)$ reference point

 $-(h\dot{\theta})\hat{s} + w \times (9\hat{\theta}_{A})$

From Twist to Screw Motion

- $\bullet\,$ The converse is true as well: given any twist $\mathcal{V}=(\omega,v)$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and $\dot{\theta}$
	- If $\omega=0$, then it is a pure translation $(h=\infty)$ pure linear

$$
\hat{s} = \frac{v}{\|v\|}, \quad \dot{\theta} = \|v\|, h = \infty, q \text{ can be arbitrary}
$$

- If
$$
\omega \neq 0
$$
:
\n $\begin{array}{ccc}\n\hat{s} & \frac{\omega}{\|\omega\|}, & \hat{\theta} = \|\omega\|, & q = \frac{\omega \times v}{\|\omega\|^2}, & h = \frac{\omega^T v}{\|\omega\|} \\
\text{Yon can } & \text{as plus into the eqn on previous} & \text{blue leg}\n\end{array}$

Examples: Screw Axis and Twist

• What is the screw axis for twist $\mathcal{V}=(0,2,2,4,0,0)?$ $w = \begin{bmatrix} 0 \\ 2 \\ v \end{bmatrix}$, $v = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$, we the previous formular
 $\Rightarrow q = \frac{wxv}{||w||^2} = \frac{4}{3}$

Screw Representation of ^a Twist

•• Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot\theta$ is the rate of rotation about that axis

 $|w - \hat{\omega}\dot{\theta}|$

- Similarly, ^a twist (spatial velocity) V can be interpreted in terms of ^a **screw** $\hat{\mathbf{s}}$ and a velocity $\dot{\theta}$ about the screw axis
- $\bullet\,$ Consider a rigid body motion along a screw axis $\hat{\mathcal{S}}=\!\!\big\{\hat{s},h,q\big\}$ with speed $\dot{\theta}.$ With slight abuse of notation, we will often write its twist as

 ${\cal V}$

- In this notation, we think of($\hat{\mathcal{S}}$ /as the twist associated with a unit speed motion along the screw axis $\{\hat{s},h,q\}$

=

 $\hat{\mathcal{S}}\hat{\mathcal{b}}$ θ

More Discussions