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Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion
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Free Vector

• Free Vector: geometric quantity with length and direction

• Given a reference frame, v can be moved to a position such that the base of
the arrow is at the origin without changing the orientation. Then the vector v
can be represented by its coordinates v in the reference frame.

• v denotes the physical quantity while Av denote its coordinate wrt frame {A}.
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Point

• Point: p denotes a point in the physical space

• A point p can be represented by a vector from frame origin to p

• Ap denotes the coordinate of a point p wrt frame {A}

• When left-superscript is not present, it means the physical vector itself or the
coordinate of the vector for which the reference frame is clear from the
context.
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Cross Product

• Cross product or vector product of a ∈ R3, b ∈ R3 is defined as

a× b =



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 (1)

Properties:

• ∥a× b∥ = ∥a∥∥b∥ sin(θ)
• a× b = −b× a
• a× a = 0
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Skew symmetric representation

• It can be directly verified from definition that a× b = [a]b, where

[a] ≜




0 −a3 a2
a3 0 −a1
−a2 a1 0


 (2)

• a =



a1
a2
a3


↔ [a]

• [a] = −[a]T (called skew symmetric)

• [a][b]− [b][a] = [a× b] (Jacobi’s identity)
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Rotation Matrix

• Frame: 3 coordinate vectors (unit length) x̂, ŷ, ẑ, and an origin

- x̂, ŷ, ẑ mutually orthogonal

- x̂× ŷ = ẑ

• Rotation Matrix: specifies orientation of one frame relative to another

ARB =
[

Ax̂B AŷB AẑB
]

• A valid rotation matrix R satisfies: (i) RTR = I; (ii) det(R) = 1
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Special Orthogonal Group

• Special Orthogonal Group: Space of Rotation Matrices in Rn is defined as

SO(n) = {R ∈ Rn×n : RTR = I, det(R) = 1}

• SO(n) is a group. We are primarily interested in SO(3) and SO(2), rotation
groups of R3 and R2, respectively.

• Group is a set G, together with an operation •, satisfying the following
group axioms:

- Closure: a ∈ G, b ∈ G ⇒ a • b ∈ G

- Associativity: (a • b) • c = a • (b • c), ∀a, b, c ∈ G

- Identity element: ∃e ∈ G such that e • a = a, for all a ∈ G.

- Inverse element: For each a ∈ G, there is a b ∈ G such that a • b = b • a = e,
where e is the identity element.
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Use of Rotation Matrix (1/2)

• Representing an orientation ARB

• Changing the reference frame ARB :
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Use of Rotation Matrix (2/2)

.

• Rotating a vector or a frame Rot(ω̂, θ): will be discussed in next lecture.
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Rigid Body Configuration

• Given two coordinate frames {A} and {B}, the configuration of B relative to
A is determined by

- ARB and AoB

• For a (free) vector r, its coordinates Ar and Br are related by:

• For a point p, its coordinates Ap and Bp are related by:
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Homogeneous Transformation Matrix

• Homogeneous Transformation Matrix: ATB

• Homogeneous coordinates:
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Example of Homogeneous Transformation Matrix
Fixed frame {a}; end effector frame {b}, the camera
frame {c}, and the workpiece frame {d}. Suppose
∥pc − pb∥ = 4

122 3.8. Exercises

(j) Calculate the matrix exponential corresponding to the exponential coordi-
nates of rigid-body motion Sθ = (0, 1, 2, 3, 0, 0). Draw the corresponding
frame relative to {s}, as well as the screw axis S.

{b}

x̂b

ŷb
ẑb

{c}
x̂c

ŷc
ẑc

{a}

x̂a

ŷa

ẑa

{d}

x̂d

ŷd

ẑd

1

1

2

Figure 3.23: Four reference frames defined in a robot’s workspace.

Exercise 3.17 Four reference frames are shown in the robot workspace of
Figure 3.23: the fixed frame {a}, the end-effector frame effector {b}, the camera
frame {c}, and the workpiece frame {d}.

(a) Find Tad and Tcd in terms of the dimensions given in the figure.
(b) Find Tab given that

Tbc =




1 0 0 4
0 1 0 0
0 0 1 0
0 0 0 1


 .

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org
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Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion
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Rigid Body Velocity (1/2)

• Consider a rigid body with angular velocity: ω (this is a free vector).

• Suppose the actual rotation axis passes through a point p; Let vp be the
velocity of the point p.

Question: A rigid body contains infinitely many points with different
velocities. How to parameterize all of their velocities?

- Consider an arbitrary body-fixed point q (means that the point is rigidly attached
to the body, and moves with the body), we have:

vq = vp + ω × (−→pq) (3)

- The velocity of an arbitrary body-fixed point depends only on (ω, vp, p) and the
location of the point q.
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Rigid Body Velocity (2/2)
• Fact: The representation form (3) is independent of the reference point p.

• Consider an arbitrary point r in space

- r may not be on the rotation axis

- r may be a stationary point in space (does not move)

- Let vr be the velocity of the body-fixed point currently coincides with r

- We still have: vq = vr + ω × (−→rq)

• The body can be regarded as translating with a linear velocity vr, while
rotating with angular velocity ω about an axis passing through r
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Rigid Body Velocity: Spatial Velocity (Twist)

• Spatial Velocity (Twist): Vr = (ω, vr)

- ω: angular velocity
- vr: velocity of the body-fixed point currently coincides with r
- For any other body-fixed point q, its velocity is

vq = vr + ω × (−→rq)

• Twist is a “physical” quantity (just like linear or angular velocity)

- It can be represented in any frame for any chosen reference point r

• A rigid body with Vr = (ω, vr) can be “thought of” as translating at vr while
rotating with angular velocity ω about an axis passing through r

- This is just one way to interpret the motion.
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Spatial Velocity Representation in a Reference Frame

• Given frame {O} and a spatial velocity V

• Choose o (the origin of {O}) as the reference point to represent the rigid
body velocity

• Coordinates for the V in {O}:
OVo=(Oω,Ovo)

• By default, we assume the origin of the frame is used as the reference point:
OV=OVo

2.2. SPATIAL VELOCITY 11

x y

z
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vO

ω B

O
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dOz

dx
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dz

(b)

Figure 2.1: The velocity of a rigid body expressed in terms of ω and vO (a),
and the basis vectors for Plücker motion coordinates (b)

through O. Although each individual contribution depends on the position of
O, their sum does not (i.e., the dependencies cancel out), so that vP depends
only on the motion of B and the location of P . Note that P , vP and ω together
describe the same rigid-body motion as O, vO and ω.

We now introduce a Cartesian coordinate frame, Oxyz, with its origin at
O. This frame defines three mutually perpendicular directions, x, y and z, and
three directed lines, Ox, Oy and Oz, each passing through the point O. This
frame also defines an orthonormal basis, {i, j,k} ⊂ E3, which we can use to
express ω and vO in terms of their Cartesian coordinates:

ω = ωxi + ωyj + ωzk

and

vO = vOxi + vOyj + vOzk .

Having resolved ω and vO into their coordinates, we can describe the velocity
of B as the sum of six elementary motions: a rotation of magnitude ωx about
the line Ox, a rotation of magnitude ωy about Oy, a rotation of magnitude ωz

about Oz, and translations of magnitudes vOx, vOy and vOz in the x, y and z
directions, respectively.

Our objective is to obtain a spatial velocity vector, v̂ ∈ M6, that describes
the same motion as ω and vO. We can accomplish this by first defining a basis
on M6, and then working out the coordinates of v̂ in that basis. The basis we
will use is

DO = {dOx,dOy,dOz ,dx,dy,dz} ⊂ M6 , (2.2)

which is illustrated in Figure 2.1(b). This is called a Plücker basis, and it
defines a Plücker coordinate system on M6. The first three basis vectors, dOx,
dOy and dOz, are unit rotations about the lines Ox, Oy and Oz, respectively,
and the rest are unit translations in the x, y and z directions, respectively. On
comparing the definitions of these basis vectors with the six elementary motions
just described, it follows immediately that

v̂ = ωxdOx + ωydOy + ωzdOz + vOxdx + vOydy + vOzdz . (2.3)
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Example of Twist I

• Example I:
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Example of Twist II

• Example II:

102 3.3. Rigid-Body Motions and Twists

x̂s

ŷs {b}
x̂b

ŷbvb

r

{s}

vs
w

Figure 3.18: The twist corresponding to the instantaneous motion of the chassis of
a three-wheeled vehicle can be visualized as an angular velocity w about the point r.

w = 2 rad/s about an axis out of the page at the point r in the plane. Inspecting
the figure, we can write r as rs = (2,−1, 0) or rb = (2,−1.4, 0), w as ωs = (0, 0, 2)
or ωb = (0, 0,−2), and Tsb as

Tsb =

[
Rsb psb
0 1

]
=




−1 0 0 4
0 1 0 0.4
0 0 −1 0
0 0 0 1


 .

From the figure and simple geometry, we get

vs = ωs × (−rs) = rs × ωs = (−2,−4, 0),

vb = ωb × (−rb) = rb × ωb = (2.8, 4, 0),

and thus obtain the twists Vs and Vb:

Vs =

[
ωs
vs

]
=




0
0
2
−2
−4
0



, Vb =

[
ωb
vb

]
=




0
0
−2
2.8
4
0



.

To confirm these results, try calculating Vs = [AdTsb ]Vb.

3.3.2.2 The Screw Interpretation of a Twist

Just as an angular velocity ω can be viewed as ω̂θ̇, where ω̂ is the unit rotation
axis and θ̇ is the rate of rotation about that axis, a twist V can be interpreted
in terms of a screw axis S and a velocity θ̇ about the screw axis.

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

rs = (2,−1, 0), rb = (2,−1.4, 0), w=2 rad/s
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Change Reference Frame for Twist (1/2)

• Given a twist V, let AV and BV be their coordinates in frames {A} and {B}

AV =

[
Aω
AvA

]
, BV =

[
Bω

BvB

]

• They are related by AV = AXB
BV
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Change Reference Frame for Twist (2/2)

.

• If configuration {B} in {A} is T = (R, p), then

AXB = [AdT ] ≜

[
R 0

[p]R R

]
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Example I Revisited
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Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion
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Screw Motion: Definition

• Rotating about an axis while also translating along the axis
Chapter 3. Rigid-Body Motions 103

−ŝθ̇ × q

hŝθ̇

x̂ ŷ

ẑ

q

ŝ

θ̇

h = pitch =
linear speed/angular speed

Figure 3.19: A screw axis S represented by a point q, a unit direction ŝ, and a pitch
h.

A screw axis represents the familiar motion of a screw: rotating about the
axis while also translating along the axis. One representation of a screw axis
S is the collection {q, ŝ, h}, where q ∈ R3 is any point on the axis, ŝ is a unit
vector in the direction of the axis, and h is the screw pitch, which defines the
ratio of the linear velocity along the screw axis to the angular velocity θ̇ about
the screw axis (Figure 3.19).

Using Figure 3.19 and geometry, we can write the twist V = (ω, v) corre-
sponding to an angular velocity θ̇ about S (represented by {q, ŝ, h}) as

V =

[
ω
v

]
=

[
ŝθ̇

−ŝθ̇ × q + hŝθ̇

]
.

Note that the linear velocity v is the sum of two terms: one due to translation
along the screw axis, hŝθ̇, and the other due to the linear motion at the origin
induced by rotation about the axis, −ŝθ̇ × q. The first term is in the direction
of ŝ, while the second term is in the plane orthogonal to ŝ. It is not hard to
show that, for any V = (ω, v) where ω 6= 0, there exists an equivalent screw axis
{q, ŝ, h} and velocity θ̇, where ŝ = ω/‖ω‖, θ̇ = ‖ω‖, h = ω̂Tv/θ̇, and q is chosen
so that the term −ŝθ̇× q provides the portion of v orthogonal to the screw axis.

If ω = 0, then the pitch h of the screw is infinite. In this case ŝ is chosen as
v/‖v‖, and θ̇ is interpreted as the linear velocity ‖v‖ along ŝ.

Instead of representing the screw axis S using the cumbersome collection
{q, ŝ, h}, with the possibility that h may be infinite and with the nonuniqueness
of q (any q along the screw axis may be used), we instead define the screw axis
S using a normalized version of any twist V = (ω, v) corresponding to motion
along the screw:

May 2017 preprint of Modern Robotics, Lynch and Park, Cambridge U. Press, 2017. http://modernrobotics.org

• Represented by screw axis {q, ŝ, h} and rotation speed θ̇

- ŝ: unit vector in the direction of the rotation axis

- q: any point on the rotation axis

- h: screw pitch which defines the ratio of the linear velocity along the screw axis
to the angular velocity about the screw axis

• Theorem (Chasles): Every rigid body motion can be realized by a screw
motion.
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From Screw Motion to Twist

• Consider a rigid body under a screw motion with screw axis {ŝ, h, q} and
(rotation) speed θ̇

• Fix a reference frame {A} with origin oA.

• Find the twist AV = (Aω, AvoA)

• Result: given screw axis {ŝ, h, q} with rotation speed θ̇, the corresponding
twist V = (ω, v) is given by

ω = ŝθ̇ v = −ŝθ̇ × q + hŝθ̇

.- The result holds as long as all the vectors and the twist are represented in the
same reference frame
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From Twist to Screw Motion

• The converse is true as well: given any twist V = (ω, v) we can always find

the corresponding screw motion {q, ŝ, h} and θ̇
- If ω = 0, then it is a pure translation (h = ∞)

ŝ =
v

∥v∥ , θ̇ = ∥v∥, h = ∞, q can be arbitrary

- If ω ̸= 0:

ŝ =
ω

∥ω∥ , θ̇ = ∥ω∥, q =
ω × v

∥ω∥2 , h =
ωT v

∥ω∥
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Examples: Screw Axis and Twist

• What is the twist that corresponds to
rotating about ẑB with θ̇ = 2?

z

x

l1

A
y

θ

ω

q
B

Figure 2.9: Rigid body motion generated by rotation about a fixed axis.

q = (0, l1, 0). The corresponding twist is

ξ =

[
−ω × q
ω

]
=



l1
0
0
0
0
1


 .

The exponential of this twist is given by

e
bξθ =

[
ebωθ (I − ebωθ)(ω × v)
0 1

]
=




cos θ − sin θ 0 l1 sin θ
sin θ cos θ 0 l1(1− cos θ)

0 0 1 0
0 0 0 1


 .

When applied to the homogeneous representation of a point, this matrix
maps the coordinates of a point on the rigid body, specified relative to the
frame A with θ = 0, to the coordinates of the same point after rotating
by θ radians about the axis.

The rigid transformation which maps points in B coordinates to A
coordinates—and hence describes the configuration of the rigid body—is
given by gab(θ) = exp(ξ̂θ)gab(0) where

gab(0) =

[
I
[

0
l1
0

]

0 1

]
.

Taking the exponential and performing the matrix multiplication yields

gab =




cos θ − sin θ 0 0
sin θ cos θ 0 l1

0 0 1 0
0 0 0 1


 ,

which can be verified by inspection.

50

• What is the screw axis for twist V = (0, 2, 2, 4, 0, 0)?
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Screw Representation of a Twist

• Recall: an angular velocity vector ω can be viewed as ω̂θ̇, where ω̂ is the unit
rotation axis and θ̇ is the rate of rotation about that axis

• Similarly, a twist (spatial velocity) V can be interpreted in terms of a screw
axis Ŝ and a velocity θ̇ about the screw axis

• Consider a rigid body motion along a screw axis Ŝ = {ŝ, h, q} with speed θ̇.
With slight abuse of notation, we will often write its twist as

V = Ŝ θ̇

- In this notation, we think of Ŝ as the twist associated with a unit speed motion
along the screw axis {ŝ, h, q}
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More Discussions
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