MEE5114 Advanced Control for RoboticsLecture 8: Rigid Body Dynamics

Prof. Wei Zhang

CLEAR Lab

Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Acceleration

• Given a rigid body with spatial velocity $\mathcal{V} = (\omega, v_o)$, its spatial acceleration is

$$
\text{Corrdinale}\text{-free} > \text{ } A = \dot{\mathcal{V}} = \begin{bmatrix} \dot{\omega} \\ \dot{\omega} \end{bmatrix} \text{ , } A = \lim_{\text{Gso}} \frac{\mathcal{V}(+16) - \mathcal{V}(+)}{8}
$$

- Recall that: $\langle v_{o}\rangle$ is the velocity of the body-fixed particle coincident with frame origin o at the current time t.
- Note: $\dot{\omega}$ is the angular acceleration of the body

$$
\nu_0 = \dot{q}(t) \cdot \text{for some body fixed } p^+
$$

-\n (\dot{v}_0) is not the acceleration of any body-fixed point! but $\dot{v}_0 \neq \ddot{q}(t)$

- In fact, $\langle \dot{v}_o \rangle$ gives the rate of change in stream velocity of body-fixed particles passing through o

Spatial vs. Conventional Accel. (1/2)

- $\bullet\,$ Why " \dot{v}_o is not the acceleration of any body-fixed point"?
- \bullet Suppose $q(t)$ is the body fixed particle coincides with o at time t $9(6)5^{\circ}$

 $\bullet\,$ So by definition, we have $v_o(t) = \dot{q}(t)$, however, $\dot{v}_o(t) \neq \ddot{q}(t)$, where $\ddot{q}(t)$ is the conventional acceleration of the body-fixed point q

$$
\sqrt{t}e^{i\theta} \int_{\delta}^{t} 1(\theta)
$$
\n- Note: $v_o(\theta) \leq \lim_{\delta \to 0} \frac{v_o(t+\delta) - v_o(t)}{\delta} \neq \frac{\delta}{2}(\theta)$
\nAt θ in $t \in \mathbb{R}$, $q(t_0) = 0$, $\sqrt{6}(\theta) = \frac{\delta}{2}(t_0)$
\n t_0 At θ in t_0
\n t_0 at t_0 in t_0

Spatial vs. Conventional Accel. (2/2) $\underbrace{v(t+f)} - \overbrace{v_0(t+1)} + \underline{i(t+f_{1}-\overline{f(t+1)}} + \overbrace{f^{32}} + \overbrace{f^{2}}$ By definition: $\dot{q}(t) = v_0(t) + w(t) \times q(t) \leftarrow hids$ for all t $\left(\dot{q}(t) = \dot{v}_0(t) + \dot{w}(t) \times \underline{q}(t) + w(t) \times \dot{q}(t) \right)$ \bullet

 \bullet If $q(t)$ is the body fixed particle coincides with o at time t , then we have

 $\ddot{q}(t) = (\dot{v}_o(t)) + \omega(t) \times \dot{q}(t)$

Plücker Coordinate System and Basis Vectors (1/2)

• Recall coordinate-free concept: let $\pmb{\psi} \in \mathbb{R}^3$ be a free vector with $\{\mathsf{o}\}$ and $\{\blacktriangleleft\}$ frame coordinate $^\circledR$ and $\textcolor{red}{}^{\textcolor{red}{\textbf{S}}}\bm{\mathit{w}}$

$$
\mathbf{r}^{(n)} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \in \mathbb{R}^{3} \iff \hat{\mathbf{r}} = [\begin{bmatrix} \frac{1}{2} & \frac{1
$$

 $\frac{d}{dt}(^{\circ}r)$

Plücker Coordinate System and Basis Vectors (2/2)

$$
r = [\hat{x}_{B} \ \hat{y}_{B} \ \hat{z}_{B}]^{s}r \qquad \hat{x}_{B} = w_{B} \times \hat{x}_{B}
$$
\n
$$
(\hat{r} \ \frac{1}{2} \ \frac{d}{dt}(\hat{r}_{P}) \times)
$$
\n
$$
\Rightarrow \qquad \hat{r} = [\hat{x}_{B} \ \hat{y}_{B} \ \hat{z}_{B}]^{s}r + [\hat{x}_{B} \ \hat{y}_{B} \ \hat{z}_{B}] \frac{d}{dt}(\hat{r}_{P})
$$
\n
$$
= w_{B} \times [\hat{x}_{B} \ \hat{y}_{B} \ \hat{z}_{B})^{t}r + [\hat{y}_{B} \ \hat{y}_{B} \ \hat{z}_{B}]^{t}r + [\hat{y}_{B} \ \hat{y}_{B} \ \hat{r}_{B}]^{t}r
$$
\nuse (fs) frame to express the above equ.\n
$$
\left(\frac{B(r)}{dt}\right) = \frac{B}{w_{B}}w_{B} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d}{dt}(\hat{r}_{T})
$$
\n
$$
\frac{d}{dt}(\hat{r}_{T}) = \frac{B}{w_{B}}\frac{d}{dt} \times F_{T} + \frac{d
$$

by physics (see featherstone) Work with Moving Reference Frame \bullet \Rightarrow we need for compute: $[{}^{\circ}e_{B_1} \circ e_{B_2} \cdots e_{B_n}] = {}^{\circ}x_{B} = {}^{\circ}A$ [Adopp] Let's dente: ${}^{\circ}T_{B} = (R, p) \Rightarrow \frac{d}{dt} ([R, {}^{\circ}P]) = [\begin{matrix} R & 0 \\ (p)R & R \end{matrix}] = [\begin{matrix} R & 0 \\ (p)R & R \end{matrix}]$
{B} - frame has instantaneous velocity $Y_{B} = [\begin{matrix} \omega \\ 0 \end{matrix}]$ Mote: $\vec{R} = \omega \times \vec{R}$, $\vec{y} = \nu + \omega \times \vec{p}$, $[\vec{R}\omega] = R[\vec{w}]R^{T}$
 $[\vec{w} \times \vec{w}] = [\vec{w} \cdot \sqrt{[\vec{w}]} - [\vec{w} \cdot \sqrt{[\vec{w}]} - \sqrt{[\vec{w} \cdot \sqrt{[\vec{w}]} + \sqrt{[\vec{w} \cdot \sqrt{[\vec{w}]} + \sqrt{[\vec{w} \cdot \sqrt{[\vec{w}]} + \sqrt{[\vec{w} \cdot \sqrt{[\vec{w}]} + \sqrt{[\vec{w} \cdot \sqrt{[\vec{w} \cdot \sqrt{[\vec$ \Rightarrow After some computation, $\frac{d}{dt}(Ad_{\tau_{k}}) = \begin{bmatrix} \overline{(\omega_{1} & 0)} \\ \overline{\tau_{12}} & \overline{\tau_{22}} \end{bmatrix} (Ad_{\tau_{2}})$ $\frac{1}{2}$ = $\frac{1}{2}$ $\frac{1}{2}$

Define:
$$
\begin{bmatrix} \overline{w} & 0 \\ \overline{w} & \overline{w} \end{bmatrix} \triangleq \begin{bmatrix} \frac{1}{2} \times 1 \\ 1 \times 2 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \times 2 \\ \frac{1}{2} \times 2 \times 1 \\ \frac{1}{2} \times 2 \times 1 \end{bmatrix}
$$

In coordinate free: $\dot{e}_{B_1} = \mathcal{V}_B \times e_{B_1}$, $\dot{e}_{B_2} = \mathcal{V}_B \times e_{B_2}$...

Derivative of Adjoint

• Suppose a frame $\{ {\sf A} \}$'s pose is $T_A = (R_A, p_A)$, and is moving at an instantaneous velocity $\mathcal{V}_A = (\omega, v)$. Then

$$
\frac{d}{dt}([\text{Ad}_{T_A}]) = \begin{bmatrix} \omega \\ w \end{bmatrix} \begin{bmatrix} \omega \\ w \end{bmatrix} [\text{Ad}_{T_A}]
$$
\n
$$
\begin{array}{c} \omega \\ \omega \end{array} \begin{array}{c} \omega \\ \omega \end{array}] = \frac{\omega}{\omega} \times \frac{\omega}{\omega}
$$
\n
$$
\frac{\omega}{\omega} = \frac{\omega}{\omega} \times \frac{\omega}{\omega}
$$
\n
$$
\frac{\omega}{\omega} = \frac{\omega}{\omega} \times \frac{\omega}{\omega}
$$

Spatial Cross Product

 $\bullet\,$ Given two spatial velocities (twists) \mathcal{V}_1 and \mathcal{V}_2 , their spatial cross product is:

$$
\mathcal{V}_1 \times \mathcal{V}_2 = \left[\begin{array}{c} \omega_1 \\ v_1 \end{array}\right] \times \left[\begin{array}{c} \omega_2 \\ v_2 \end{array}\right] \triangleq \left[\begin{array}{c} \omega_1 \times \omega_2 \\ \omega_1 \times v_2 + v_1 \times \omega_2 \end{array}\right]
$$

ive **Brack**

 $\bullet\,$ Matrix representation: $\,{\cal V}_1\times{\cal V}_2=[{\cal V}_1\!\times\!]{\cal V}_2$, where

$$
[\mathcal{V}_1 \times] \triangleq \left[\begin{array}{cc} [\omega_1] & 0 \\ [v_1] & [\omega_1] \end{array} \right]
$$

 $\bullet\,$ Roughly speaking, when a motion vector ${\cal V}$ is moving with a spatial velocity $\mathcal Z$ (e.g. it is attached to a moving frame) but is otherwise not changing, then

$$
\dot{\mathcal{V}} = \mathcal{Z} \times \mathcal{V}
$$

Spatial Cross Product: Properties (1/1)

 \bullet Assume A is moving wrt to O with velocity \mathcal{V}_{A}

 \bm{O} $\dot{X}_A = [^O\!\mathcal{V}_A \times]^O\! X_A$

 \bullet $[{\cal X}{\cal V}\times] = X[{\cal V}\times]X^T$, for any transformation X and twist $\mathcal V$ $[Rw] = R[w] R^T$

 V pody

Spatial Acceleration with Moving Reference Frame

Consider a body with velocity \mathcal{V}_{body} (wrt inertia frame), and ${}^o\!\mathcal{V}_{body}$ and ${}^B\!\mathcal{V}_{body}$ be its Plücker coordinates wrt $\{ \text{O}\}$ and $\{ \text{B}\}$:

$$
\theta \left(\frac{d}{dt} (V_{body}) \right) = \sqrt{\frac{d}{dt} ({}^{B}V_{body}) + {}^{B}V_{b} \times {}^{B}V_{body}} \times dw \text{ to frame } \{B\} \text{ is moving}
$$
\n
$$
\theta \left(\frac{d}{dt} (V_{body}) \right)
$$
\n
$$
= {}^{B}V_{body}
$$
\n
$$
= {}^{B}V_{body}
$$
\n
$$
\theta \left(\frac{d}{dt} (V_{body}) \right)
$$

$$
{}^{\circ}\!A_{\text{body}} = \frac{d}{dt} ({}^{\circ}\mathcal{V}_{\text{body}}) = \frac{d}{dt} ({}^{\circ}\!\!\times_{B} {}^{\text{rs}}\!\!\times_{\text{body}}) = {}^{\circ}\!\!\times_{B} {}^{\text{bs}}\!\!\times_{\text{body}} + {}^{\circ}\!\!\times_{B} {}^{\text{rs}}\!\!\times_{\text{body}}
$$

$$
= [Y_{B} \times]^{\circ}X_{B} \xrightarrow{\beta} Y_{body} + \sqrt[3]{16} \times \sqrt[3]{160} + \
$$

Spatial Acceleration Example

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Force (Wrench)

- $\bullet\,$ Consider a rigid body with many forces on it and fix an arbitrary point O in space
- The net effect of these forces can be expressed as
	- A force f , acting along a line passing through O

$$
f = \sum f_i
$$

- A moment n_O about point O n_6 ϵ R^3
- •**Spatial Force (Wrench):** is ^given by the 6D vector

Spatial Force (Wrench): is given by the 6D vector

\n
$$
\mathcal{F} = \left[\frac{n_O}{f}\right]
$$

\n
$$
\mathcal{F} = \left
$$

 M lect

Spatial Force in Plücker Coordinate Systems = $16 + f \times 66$

• Given a frame $\{A\}$, the Plücker coordinate of a spatial force ${\cal F}$ is given by

 $\Rightarrow \triangleq 4 \times \frac{1}{8}$

 $\frac{x}{18} = \frac{18}{14}$ $\uparrow \times_B$ $B = \begin{bmatrix} B_{R_A} & 0 \\ 0 & B_{R_B} \end{bmatrix}$ $b\times b$

Wrench-Twist Pair and Power

$$
\stackrel{\text{def}}{\longleftrightarrow} v \qquad \mathcal{P} = f^T v = c f. v
$$

- $\bullet\,$ Recall that for a point mass with linear velocity v and linear force $f.$ Then we know that the power (instantaneous work done by f) is given by $f\cdot v=f^Tv$
- This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)
- Suppose a rigid body has a twist $\frac{A}{A}$ $\mathcal{V}=(\frac{A_{\mathcal{U}},A}{\omega_{o}}_{A})$ and a wrench ${}^A \! {\cal F} = ({}^{\!A}\! n_o)_{\!\!\rm A}\,,$ \bm{A} $f)$ acts on the body. Then the power is simply

$$
S(abc \quad \theta = \frac{(\Delta V)^{T}}{6 \times 1} \frac{A F}{6 \times 1} = \frac{A V^{T}}{6 \times 1} = \frac{A V^{T}}{6 \times 1} \frac{A V^{T}}{6 \times 1}
$$
\n
$$
= (\frac{A W^{T}}{4 \times 1} \frac{A W^{T}}{4 \times 1} \frac{A V^{T}}{4 \times 1} \frac{A V
$$

Joint Torque

- $\bullet\,$ Consider a link attached to a 1-dof joint (e.g. revolute or prismatic). Let $\cal S$ ˆbe the screw axis of the joint. The velocity of the link induced by joint motion is given by: $\mathcal{V}=\hat{\mathcal{S}}\dot{\theta}$
- \bullet ${\cal F}$ be the wrench provided by the joint. Then the power produced by the joint is

$$
P = \frac{\mathcal{V}^T \mathcal{F}}{\sqrt{\hat{S} \hat{\theta} \hat{\theta}} \hat{\theta}} = \hat{\tau} \hat{\theta}
$$

So $\mathcal{S} = \hat{\theta}$

- $\hat{\bm{c}}(\tau)$ $=$ $\hat{\mathcal{S}}^T\mathcal{F}$ $=$ $\mathcal{F}^T\hat{\mathcal{S}}$ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench.
- \bullet Often times, τ is referred to as joint "torque" or generalized force

9

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Rotational Inertia (1/2)	point mass : m
• Recall momentum for point mass:	\n $\sqrt{5} \rightarrow f$ \n
webody : $v = r$, $a = v = r$ e R^5	\n $\sqrt{5} \rightarrow f$ \n
0.100	\n $v = w \times r$ \n
1.100	\n $v = \omega \times r$ \n
1.100	\n $v = \omega \times r$ \n
1.100	\n $v = \omega \times r$ \n
1.100	\n $v = m \times f$ \n
1.100	\n $v = m \times f$ \n
1.100	\n $v = m \times f$ \n
1.100	\n $v = m \times f$ \n
1.100	\n $v = m \times (m \times r)$ \n
1.100	\n $v = m \times (m \times r)$ \n
2.100	\n $v = m \times (n \times r)$ \n
3.21	\n $v = m \times (n \times r)$ \n
4.110	\n $v = m \times (n \times r)$ \n
5.22	\n $v = m \times (n \times r)$ \n
6.23	\n $v = m \times (n \times r)$ \n
7.41	\n $v = m \times (n \times r)$ \n

- It is ^a constant matrix if the origin coincides with CoM

what's definition for Com?

$$
C \triangleq \text{COM} = \frac{1}{m} \int f(r) r \, dV
$$

$$
\frac{C \ge \frac{1}{m} \sum m_i r_i}{\frac{1}{m} \sum m_i (c \vec{r}_i)} = 0
$$
\n
$$
\frac{\sum m_i (c \vec{r}_i)}{\frac{1}{m} \sum m_i (c \vec{r}_i)} = 0
$$
\n
$$
\frac{\sum m_i (c \vec{r}_i)}{\frac{1}{m} \sum m_i (c \vec{r}_i)} = 0
$$

Spatial Momentum

 V_c

Change Reference Frame for Momentum

• Spatial momentum transforms in the same way as spatial forces:

$$
h = \frac{1}{2}k_0 \sqrt{4k_1} R_{\text{re}} = (R_0, {}^{n}R_0)
$$
\n
$$
= \frac{1}{2}k_0 \sqrt{4k_1} R_{\text{re}} = (R_0, {}^{n}R_0)
$$
\n
$$
= \frac{1}{2}k_0 \sqrt{4k_1} R_{\text{re}} = \frac{1}{2}k_0 \sqrt{4k_0} R_{\text{re}} = \frac{1}{2}k_
$$

Spatial Inertia

 $M \longrightarrow F$ Inertia of a rigid body defines linear relationship between velocity and •wrench momentum. 2 ture nasmen th M

 $h = \mathcal{IV}$

think about inertia matrix as mapping

 $6x$

 \bullet Spacial inertia ${\cal I}$ is the one such that

• Let ${C}$ be a frame whose origin coincide with CoM. Then

 $= \left[\begin{array}{cc} {}^{C}\!\bar{I}_{c} & 0\ 0 & m \end{array} \right]$ $\begin{bmatrix} \bar{I}_c & 0 \ 0 & m\bar{I}_3 \end{bmatrix}$ ${}^\mathrm{C}\! \mathcal{I} \models$ $c_{\phi_c} = 2\overline{I}_c^c$ w $c_{h} = \begin{bmatrix} c_{\overline{L}}c_{w} \\ m c_{v_{c}} \end{bmatrix} = \begin{bmatrix} c_{\overline{L}} & 0 \\ 0 & m_{\overline{L}_{33}} \end{bmatrix} = \gamma$ 3x3 identity natrix

Spatial Inertia

• Spatial inertia wrt another frame {A}:

$$
\mathbf{A}_{h}=\mathbf{A}_{h} \mathbf{A}_{h} \mathbf{A}_{h} \mathbf{A}_{h}
$$
\n
$$
\mathbf{A}_{h} = \mathbf{A}_{h} \mathbf{A}_{h}
$$

 $\begin{array}{ccc} \mathbb{M} & \rightarrow & \mathbb{L} \\ \mathbb{V} & & \end{array}$

when
$$
\{A\}
$$
 has same orientation of β m frame (\overline{I}_{c})

• Special case:
$$
{}^A R_C = I_3
$$

we know
$$
4\chi_c = \begin{bmatrix} \overline{L}_3 & 0 \\ \frac{1}{2} & \overline{L}_3 \end{bmatrix}
$$

\n $\begin{bmatrix} m_2 \\ m_3 \end{bmatrix}$ $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$ $\begin{bmatrix} m_2 \\ m_3 \end{bmatrix}$ $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$
\n $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$ $\begin{bmatrix} m_2 \\ m_3 \end{bmatrix}$ $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$ $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$
\n $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$ $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$
\n $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$ $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$
\n $\begin{bmatrix} m_1 \\ m_2 \end{bmatrix}$

Outline

- Spatial Acceleration \bullet $e_{\mathbf{g}_{\nu}}^*$ $e_{B_2}^k$ $\mathcal{C}_{\mathsf{B}_{\mathbf{b}}}^{\boldsymbol{\kappa}}$ basts verter \mathbf{z} • Spatial Force (Wrench) farce Space • Spatial Momentum e k men-
- Newton-Euler Equation using Spatial Vectors

$$
\hat{J} = \left(\frac{1}{1 + \frac{1}{1 + \frac{
$$

Cross Product for Spatial Force and Momentum Assume frame A is moving with velocity A \mathcal{V}_A then: $\dot{\mathcal{C}}^*_{\mathcal{B}i} = \mathcal{V}_{\mathcal{B}} \times$ Q_{12}^* \bullet $A\left[\frac{d}{dt}\mathcal{F}\right]$ $\frac{d}{dt}\left(^{A}\mathcal{F}\right) +^{A}\mathcal{V} \rightarrow^{\ast }{}^{A}\mathcal{F}$ = "x" defined as where $\mathcal{V} = \begin{bmatrix} w \\ v \end{bmatrix}, \quad \mathcal{V} = \begin{bmatrix} n \\ f \end{bmatrix}$ $\overline{\mathcal{Y}} \times \overline{\mathcal{Y}} \stackrel{\sim}{=} \left[\begin{array}{c} w \times n + v \times f \\ w \times f \end{array} \right]$ \bullet $A\left[\frac{d}{dt}h\right]=$ $\frac{d}{dt}\left(\begin{smallmatrix} A\end{smallmatrix} \right)$ $\overline{}$ $(h) + ^A\mathcal{V} \times ^{*A}\!h$ Fact: $\left[\gamma x^* \right] = - \left[\gamma x \right]^T$ or equivalently $=$ $\begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \begin{bmatrix} \alpha \end{bmatrix} & \begin{bmatrix} \begin{bmatrix} \alpha \end{bmatrix} \end{bmatrix} \\ \begin{bmatrix} \alpha \end{bmatrix} & \begin{bmatrix} \begin{bmatrix} \alpha \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}$ $\dot{\mathcal{F}} = \chi_{\mathbf{z}}^* \mathbf{z}_{\mathcal{F}}^o + \left[\dot{V}_{\mathbf{z}} \mathbf{x}^* \right] \langle \mathbf{x}_{\mathbf{z}}^* \rangle_{\mathcal{F}}^o$ bX \Rightarrow $\chi_{\mathcal{B}}^{\dagger} = [\nu_{\mathcal{B}} \times^{\mathcal{A}}]$

 \bullet any frame $\sqrt{}$

$$
\frac{3}{4} = 52.54 + 32 \times 52.52
$$
 (even when {B} is away from C-M)

$$
\frac{1}{f}(\tilde{f}) = \frac{18}{d} \left(\frac{d}{dt}h\right) = \frac{18}{d} \left(\frac{d}{dt}(2\gamma)\right) = \frac{18}{d} \left(2\lambda + 2\gamma\right)
$$

Let's work with inertia frame t¹ and
to derive the NE- equation
is changing the fact
that inertia is

Derivations of Newton-Euler Equation

 \cdot Assume: $\begin{cases} 85 & \text{attached to the body} \\ \implies \mathcal{V}_B = \mathcal{V}_{\text{body}} \end{cases}$, By is constant • $bold$ V_{body} · $\frac{d}{dt}(^{\circ}h) = \frac{d}{dt}(.^{\circ}I^{\circ}) = \frac{e\dot{\gamma}}{d\tau}$ + $I^{\circ}\dot{A}$ = $[Y_{B}x^{*}] = X_{B}^{*}I^{*}X_{0}^{*}Y - Y_{B}^{*}I^{*}Y_{0}Y_{B}x^{*}$ $\chi^2 \chi^4 + V^{\circ} \chi^2$ $\gamma_{A}^{0} + \gamma_{B}^{0} + \gamma_{B}^{0}$ Note: $\hat{X}_{B} = [\hat{Y}_{B} \times]^{\circ} \hat{X}_{B}$, $(\hat{Y}_{B} \hat{B} \hat{X}_{D}) = I \Rightarrow \hat{Y}_{B} \hat{B} \hat{X}_{D} + \hat{Y}_{B} \hat{B} \hat{X}_{D}$ Newton-Euler Equation **Advanced Control for Robotics** Wei Zhang (SUSTech) 29 / 31

More Discussions

•

More Discussions

•