MEE5114 Advanced Control for Robotics Lecture 8: Rigid Body Dynamics

Prof. Wei Zhang

CLEAR Lab

Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Acceleration

• Given a rigid body with spatial velocity $\mathcal{V} = (\omega, v_o)$, its spatial acceleration is

coordinate-free
$$\mathcal{A} = \dot{\mathcal{V}} = \begin{bmatrix} \dot{\omega} \\ \dot{\upsilon}_{o} \end{bmatrix}$$
, $\mathcal{A} = \lim_{s \to o} \frac{\mathcal{V}(++s) - \mathcal{V}(+)}{s}$

- Recall that: v_o is the velocity of the body-fixed particle coincident with frame origin o at the current time t.
- Note: $\dot{\omega}$ is the angular acceleration of the body

$$v_o = \dot{q}(t)$$
, for some body fixed pt
- \dot{v}_o is not the acceleration of any body-fixed point! but $\dot{v}_o \neq \ddot{q}(t)$

- In fact, \dot{v}_o gives the rate of change in stream velocity of body-fixed particles passing through o

Spatial vs. Conventional Accel. (1/2)

- Why " \dot{v}_o is not the acceleration of any body-fixed point"?
- Suppose q(t) is the body fixed particle coincides with o at time t_o $q(t_o) = 0$

• So by definition, we have $v_o(t) = \dot{q}(t)$, however, $\dot{v}_o(t) \neq \ddot{q}(t)$, where $\ddot{q}(t)$ is the conventional acceleration of the body-fixed point q

- Note:
$$\dot{v}_{o}(t) = \lim_{\delta \to 0} \frac{v_{o}(t+\delta) - v_{o}(t)}{\delta} \neq \dot{q}(t_{0})$$

At time $t=t_{0}$, $q(t_{0}) = 0$, , $V_{o}(t_{0}) = \dot{q}(t_{0})$
time $t=t_{0}$, $q_{1}(t_{0}+s) = 0$, $V_{o}(t_{0}) = \dot{q}(t_{0})$
time $t=t_{0}$, $q_{1}(t_{0}+s) = 0$, $V_{o}(t_{0}+s)$
 $T_{onnother budy-fixed particle}$
Note: q_{1} and q_{ave} different joints,
 $\dot{q}_{1}(t_{0}+s) \neq q(t_{0}+s)$

Spatial vs. Conventional Accel. (2/2)By definition: $\dot{q}(t) = v_0(t) + w(t) \times q(t) \leftarrow holds for all t$ $\ddot{q}(t) = \dot{v}_{0}(t) + \dot{w}(t) \times q(t) + w(t) \times \dot{q}(t)$ At $t = t_0$, $(i_1 + i_2) = i_2 + i_3 + i_4 +$

• If q(t) is the body fixed particle coincides with o at time t, then we have

 $\ddot{q}(t) = (\dot{v}_o(t)) + \omega(t) \times \dot{q}(t)$

Plücker Coordinate System and Basis Vectors (1/2)

• Recall coordinate-free concept: let $\psi \in \mathbb{R}^3$ be a free vector with $\{o\}$ and $\{\mathring{A}\}$ frame coordinate ${}^{o}\varphi$ and ${}^{\mathfrak{B}}\varphi$

$$\begin{array}{c} \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \end{array} \end{array} \xrightarrow{r_{0}} \left(\begin{array}{c} & & & \\ & & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & & \\ & & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} & & \\ \end{array} \right) \xrightarrow{r_{0}} \left(\begin{array}{c} &$$

 $= \frac{\partial}{d+} (\circ \gamma)$

Plücker Coordinate System and Basis Vectors (2/2)

• (2)
$$\Rightarrow$$
 $r = [5ki jk 2k]^{p}r$ $k_{0} = w_{0}x k_{0}$
 $(\dot{r} \stackrel{?}{=} \frac{d}{dt}({}^{e}r)x)$
 \Rightarrow $\dot{r} = [5ki j_{0} 2k]^{p}r + [5ki j_{0} 2k] \frac{d}{dt}({}^{e}r)$
 $= W_{0}x[5ki j_{0} 2k]^{n}r + [1] \frac{d}{dt}({}^{e}r)$
 $use f(k) frame to express the above equ.
 $({}^{B}(\dot{r}) = {}^{B}W_{0}x^{B}r + \frac{d}{dt}({}^{e}r)$
 $use f(k) frame to express the above equ.
 ${}^{B}(\dot{r}) = {}^{B}W_{0}x^{B}r + \frac{d}{dt}({}^{e}r)$
 $use f(k) frame to express the above equ.
 ${}^{B}(\dot{r}) = {}^{B}W_{0}x^{B}r + \frac{d}{dt}({}^{e}r)$
 $use f(k) frame to express the above equ.
 ${}^{B}(\dot{r}) = {}^{B}W_{0}x^{B}r + \frac{d}{dt}({}^{e}r)$
 $uccounts for four the express in exordinate
 $uccounts for four the frame axes is moving$$$$$$

$$\frac{1}{24} + \frac{1}{24} + \frac{1}{24}$$

• NOW Let's work with for frame to find the derivative

$$\Rightarrow$$
 we need for compute: [e_{B_1} e_{B_2} e_{B_4}] = $X_B = \frac{d}{dt} [Ad_{T_B}]$

Let's denite:
$$T_{B} = (R, p) \Rightarrow \frac{d}{dt} \left(\begin{bmatrix} R & 0 \\ [ij]R & R \end{bmatrix} \right) = \begin{bmatrix} \dot{R} & 0 \\ (ij)R' & \dot{R} \end{bmatrix}$$

 $\{B\} - frame has instantaneous velocity $\mathcal{V}_{B} = \begin{bmatrix} \omega \\ \omega \end{bmatrix}$
Note: $\dot{R} = \omega \times R$, $\dot{f} = v + \omega \times p$, $[Rw] = R[w]R^{T}$
 $[w_{1} \times w_{2}] = [w_{1}][w_{2}] - [w_{2}][w_{1}] - Jacobi's identity$$

After some computation,
$$\frac{d}{dt}(Ad_{T_{B}}) = \begin{bmatrix} [w] & 0 \\ [v] & [w] \end{bmatrix} (Ad_{T_{B}})$$

 $\dot{X}_{B} = \begin{bmatrix} [w] & 0 \\ [v] & [w] \end{bmatrix} (X_{B})$
 $\dot{X}_{B} = \begin{bmatrix} [w] & 0 \\ [v] & [w] \end{bmatrix} (X_{B})$
 $\dot{X}_{B} = \begin{bmatrix} [w] & 0 \\ [v] & [w] \end{bmatrix} (X_{B})$

Define:
$$\begin{bmatrix} w \end{bmatrix} 0 \\ \begin{bmatrix} v \end{bmatrix} & \# \end{bmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} v_B \times \end{bmatrix}, \quad \stackrel{\circ}{} \stackrel{\times}{X}_B = \begin{pmatrix} v_B \times \stackrel{\circ}{X}_B \\ \hline v \end{pmatrix} \stackrel{\text{def}}{=} \begin{bmatrix} v_B \times \stackrel{\circ}{X}_B \\ \hline e_{B_1} = v_B \times e_{B_1} \\ \hline e_{B_1} = v_B \times e_{B_1} \\ \hline e_{B_2} = \frac{v_B \times e_{B_2}}{2} \xrightarrow{e_{B_2}} \xrightarrow{e_{B_$$

Derivative of Adjoint

• Suppose a frame {A}'s pose is $T_A = (R_A, p_A)$, and is moving at an instantaneous velocity $\mathcal{V}_A = (\omega, v)$. Then

$$\frac{d}{dt} \left(\begin{bmatrix} \operatorname{Ad}_{T_A} \end{bmatrix} \right) = \begin{bmatrix} \begin{bmatrix} \omega \\ \end{bmatrix} & \begin{bmatrix} \omega \\ \end{bmatrix} & \begin{bmatrix} \omega \\ \end{bmatrix} & \begin{bmatrix} \operatorname{Ad}_{T_A} \end{bmatrix} \\ \stackrel{\bullet}{\bigvee} & \stackrel{\bullet}{\bigwedge} & \stackrel{\bullet}{\longrightarrow} & \stackrel{\bullet}{\bigvee} & \stackrel{\bullet}{\bigwedge} & \stackrel{\bullet}{\longrightarrow} & \stackrel$$

Spatial Cross Product

• Given two spatial velocities (twists) V_1 and V_2 , their spatial cross product is:

$$\mathcal{V}_1 \times \mathcal{V}_2 = \begin{bmatrix} \omega_1 \\ v_1 \end{bmatrix} \times \begin{bmatrix} \omega_2 \\ v_2 \end{bmatrix} \triangleq \begin{bmatrix} \omega_1 \times \omega_2 \\ \omega_1 \times v_2 + v_1 \times \omega_2 \end{bmatrix}$$

ie Bracket

• Matrix representation: $\mathcal{V}_1 \times \mathcal{V}_2 = [\mathcal{V}_1 \times] \mathcal{V}_2$, where

$$\begin{bmatrix} \mathcal{V}_1 \times \end{bmatrix} \triangleq \begin{bmatrix} \begin{bmatrix} \omega_1 \end{bmatrix} & 0 \\ \begin{bmatrix} v_1 \end{bmatrix} & \begin{bmatrix} \omega_1 \end{bmatrix}$$

• Roughly speaking, when a motion vector \mathcal{V} is moving with a spatial velocity \mathcal{Z} (e.g. it is attached to a moving frame) but is otherwise not changing, then

$$\dot{\mathcal{V}} = \mathcal{Z} imes \mathcal{V}$$

Spatial Cross Product: Properties (1/1)

• Assume A is moving wrt to O with velocity \mathcal{V}_A

 ${}^{\scriptscriptstyle O}\dot{X}_A = \left[{}^{\scriptscriptstyle O}\mathcal{V}_A \times\right]{}^{\scriptscriptstyle O}X_A$

• $[XV \times] = X[V \times]X^T$, for any transformation X and twist V $[Rw] = R[w]R^T$

Voody

Spatial Acceleration with Moving Reference Frame

Consider a body with velocity \mathcal{V}_{body} (wrt inertia frame), and \mathcal{V}_{body} and \mathcal{B}_{body} be its Plücker coordinates wrt {O} and {B}:

•
$$\mathcal{B}_{body} = \left[\frac{d}{dt} \left({}^{B}\mathcal{V}_{body} \right) + {}^{B}\mathcal{V}_{b} \times {}^{B}\mathcal{V}_{body} \right]$$
 due to frame \$133\$ is moving
 $\mathcal{B}_{dt} \left(\mathcal{V}_{body} \right)$ apparent
 $derivative$
 $= {}^{a}\dot{\mathcal{V}}_{body}$
• $\mathcal{A} = {}^{O}X_{B}{}^{B}A$

Abody =
$$\frac{d}{dt}(V_{body}) = \frac{d}{dt}(X_B^B V_{body}) = X_B^B V_{body} + X_B^B V_{bdy}$$

$$= [\mathcal{V}_{\mathcal{B}} \times]^{\circ} \times_{\mathcal{B}} \overset{\mathcal{B}}{\rightarrow} \overset{\mathcal{B}} \overset{\mathcal{B}} \overset{\mathcal{B}} \overset{\mathcal{B}}{\rightarrow} \overset{\mathcal{B}}{\rightarrow} \overset{\mathcal{B}} \overset$$

Spatial Acceleration

Spatial Acceleration Example

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum
- Newton-Euler Equation using Spatial Vectors

Spatial Force (Wrench)

- Consider a rigid body with many forces on it and fix an arbitrary point O in space
- The net effect of these forces can be expressed as
 - A force f, acting along a line passing through O

$$f = \Sigma f_i$$

- A moment n_0 about point O $N_0 \in \mathbb{R}^3$ $N_0 = \sum_i (\widehat{OP_i}) \times f_i$

う

• Spatial Force (Wrench): is given by the 6D vector

What if we change reference point to
$$q$$

 $N_q = V_{i+} \text{ wx oq'}$
 $V_q = V_{i+} \text{ wx oq'}$
 $V_q = V_{i+} \text{ wx oq'}$
 $V_q = V_{i+} \text{ wx oq'}$
 $N_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \sum_{i} (q_{i} q_{i}) - oq_{i}^2) \times f_i$
 $= n_0 + \overline{q} \partial \times \overline{z} + \overline{f}_i = n_0 + \overline{q} \partial \times f_i$
Spatial Force
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times \overline{z} + \overline{f}_i = n_0 + \overline{q} \partial \times f_i$
 $= n_0 + \overline{q} \partial \times \overline{z} + \overline{f}_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $= n_0 + \overline{q} \partial \times \overline{z} + \overline{f}_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i = n_0 + \overline{q} \partial \times f_i$
 $M_q = \sum_{i} (q_{i} q_{i}) \times f_i$

Spatial Force in Plücker Coordinate Systems = $10 + f \times \overline{oq}$

• Given a frame $\{A\}$, the Plücker coordinate of a spatial force \mathcal{F} is given by

Spatial Force

 $\Rightarrow \stackrel{\triangleleft}{=} \stackrel{\wedge}{\times} \stackrel{\times}{\times}_{B}$

 $_{B}^{*} \approx \left(\frac{3}{A} \right)$ TXB ${}^{B}\chi_{A} = \begin{pmatrix} {}^{B}R_{A} & 0 \\ {}^{b}P_{A} \end{pmatrix} {}^{B}R_{A} & {}^{B}R_{A} \end{pmatrix}$ bxb

- Wrench-Twist Pair and Power $f = f^{T} = cf = cf$
 - Recall that for a point mass with linear velocity v and linear force f. Then we know that the power (instantaneous work done by f) is given by $f \cdot v = f^T v$
 - This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)
 - Suppose a rigid body has a twist $\mathcal{Y} = (\mathcal{A}\omega, \mathcal{A}v_{o_A})$ and a wrench $^{A}\mathcal{F} = (\mathcal{A}n_{o_A}, \mathcal{A}f)$ acts on the body. Then the power is simply

Joint Torque

- Consider a link attached to a 1-dof joint (e.g. revolute or prismatic). Let \hat{S} be the screw axis of the joint. The velocity of the link induced by joint motion is given by: $\mathcal{V} = \hat{S}\dot{\theta}$ $\mathcal{F}_{\Lambda} \not \to \mathcal{V}$
- \mathcal{F} be the wrench provided by the joint. Then the power produced by the joint is

$$P = \underbrace{\mathcal{V}^T \mathcal{F}}_{S} = \underbrace{\left(\widehat{S}^T \mathcal{F} \right) \widehat{\theta}}_{S} \triangleq \widehat{\tau} \widehat{\theta}$$

$$(\widehat{S} \widehat{\theta})^T \mathcal{F} \stackrel{\text{def}}{\Rightarrow} \triangleq \mathsf{T} \quad \text{scalar}$$

- $\widehat{\mathcal{T}} = \widehat{\mathcal{S}}^T \mathcal{F} = \mathcal{F}^T \widehat{\mathcal{S}}$ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench.
- Often times, τ is referred to as joint "torque" or generalized force

9

Outline

- Spatial Acceleration
- Spatial Force (Wrench)
- Spatial Momentum (
- Newton-Euler Equation using Spatial Vectors

Rotational Inertia (1/2)
• Recall momentum for point mass:

$$1i \wedge eor$$

 $velocity$: $v = \dot{r}$, $a = \dot{v} = \ddot{r} \in \mathbb{R}^3$
 $frie: f = ma = m\dot{v} = m\ddot{r}$
 $frie: f = ma = m\dot{v} = m\ddot{r}$
 $inear : L = mv$
 $momentum$
 $momentum$
 $r \times (m w \times r)$
 $= m (r \times w \times r)$
 $= m (r \times (m \times r))$
 $= m (r) (r) w$
 $= m (r) (r) w$

- It is a constant matrix if the origin coincides with CoM

what's definition for Com?

$$C \stackrel{\text{definition}}{=} \int f(r) r dr$$

$$(= \frac{1}{m} \sum m_i r_i$$

If C is (m, then $m \sum m_i (cr_i) = 0$
 $\sum m_i (cr_i) = 0 \implies \sum m_i [cr_i] = 0$

Spatial Momentum

Vc

- Linear momentum: $1/=mV_{cm} = L = \sum m_i v_i = \sum m_i (v_{ct} w \times c v_i)$
- $= mv_{c}$ $= (\Xi m)v_{c} + (\Xi m)(Cr_{i}) \times w$ $= mv_{c}$ $= mv_{c}$ $= mv_{c}$ $= mv_{c}$ $= \chi m(cr_{i})$ $= \chi m(cr_{i})$

$$h = \begin{bmatrix} \phi \\ L \end{bmatrix} \in \mathbb{R}^{6}$$

mass: m

rotational

inertia: I_C

ω

 \boldsymbol{C}

 v_C

 $\overrightarrow{OC} = c$

 $L = m v_C$

0

Change Reference Frame for Momentum

• Spatial momentum transforms in the same way as spatial forces:

Spatial Inertia

Inertia of a rigid body defines linear relationship between velocity and momentum.
 Inertia of a rigid body defines linear relationship between velocity and wrench wrench wrench mimentum

think about inertia matrix as mapping

6x b

 $h = \mathcal{IV}_{\mathbf{x}}$

• Spacial inertia \mathcal{I} is the one such that

• Let $\{C\}$ be a frame whose origin coincide with CoM. Then In this case, we know $C_{\mathcal{I}} = \begin{bmatrix} C_{\overline{I}_{c}} & 0\\ 0 & mI_{3} \end{bmatrix}$ $C_{\mathcal{I}} = \begin{bmatrix} C_{W} \\ 0 & mI_{3} \end{bmatrix}$ $C_{\mathcal{I}} = \begin{bmatrix} C_{W} \\ 0 & mI_{3} \end{bmatrix}$

$$c\phi_{c} = c\overline{I}_{c}c_{w} \qquad c_{h} = \begin{bmatrix} c\overline{I}_{c}c_{w} \\ m^{c}v_{e} \end{bmatrix} = \begin{bmatrix} c\overline{I}_{c} & 0 \\ 0 & m^{c}\overline{I}_{3} \end{bmatrix} c_{y}$$

$$grs identity natrix$$

Spatial Inertia

• Spatial inertia wrt another frame {A}:

$$^{A}h = ^{A}\chi_{c}^{*} ^{c}h = ^{A}\chi_{c}^{*} ^{c}\Gamma^{c}\chi_{A}$$

M→F

• Special case: ${}^{A}R_{C} = I_{3}$

$$Wc \ know \ A\chi_{c} = \begin{bmatrix} I_{3} \\ (P_{c}) & I_{3} \end{bmatrix}$$

$$M = \begin{bmatrix} c \Xi + m [Ap_{c}] [P_{p}_{c}]^{T} \\ m [Ap_{c}] & m [Ap_{c}] \end{bmatrix}$$

$$M = \begin{bmatrix} m [Ap_{c}] [P_{p}_{c}]^{T} \\ m [Ap_{c}] & m [Ap_{c}] \end{bmatrix}$$

$$M = \begin{bmatrix} Advanced Control for Robotics \\ Wei Zhang (SUSTech) \\ 25 / 31 \end{bmatrix}$$

Outline

- **Spatial Acceleration** es, eg. C₿₽ 2 • Spatial Force (Wrench) e basts verter space force • Spatial Momentum elemen
- Newton-Euler Equation using Spatial Vectors

$$\vec{F} = (\vec{X}_{B}^{*} \vec{P} + \vec{X}_{B}^{*} (\vec{F})')$$

$$\vec{F}$$

$$Tf \text{ turns out (if 12 has velocity \mathcal{Y}_{B})$$

Cross Product for Spatial Force and Momentum Assume frame A is moving with velocity ${}^{A}\mathcal{V}_{A}$ then: $\hat{e}_{B_i}^* = \mathcal{V}_B \times$ • $^{A}\left[\frac{d}{dt}\mathcal{F}\right] = \frac{d}{dt}\left(^{A}\mathcal{F}\right) + {}^{A}\mathcal{V}_{A} \times {}^{*A}\mathcal{F}$ Joordiante-free af : apparent 'X*' defined as where $\mathcal{V} = \begin{bmatrix} w \\ v \end{bmatrix}, \quad \mathcal{F} = \begin{bmatrix} n \\ f \end{bmatrix}$ $\tilde{\mathcal{Y}} \times \tilde{\mathcal{F}} \stackrel{\text{algebra}}{=} \begin{bmatrix} w \times n + v \times f \\ w \times f \end{bmatrix}$ • $A\left[\frac{d}{dt}h\right] = \frac{d}{dt}(Ah) + \mathcal{V} \times^{*A}h$ Fact: $[\mathcal{Y}_{X}^{*}] = -[\mathcal{Y}_{X}]^{T}$ or equivalently $= \begin{bmatrix} \overline{(U)} & \overline{(V)} \\ 0 & \overline{(W)} \end{bmatrix}$ $\dot{f} = \chi_{\mu}^{*} \beta_{f}^{*} + \left[\chi_{\mu} \chi_{n}^{*} \right] \chi_{n}^{*} f$ 6X 4 $\Rightarrow X_{B} = V_{L} \times 1$

Newton-Euler Equation

Newton-Euler Equation

- Adopting spatial vectors, the Newton-Euler equation has the same form in any frame
 - $F = BT BA + (BY) \times BT BY (even when {B}) is onwong from (DM)$

$${}^{B}(F) = {}^{B}(\frac{d}{dt}h) = {}^{B}(\frac{d}{dt}(TY)) = {}^{B}(TA + \dot{T}Y)$$

$${}^{E}(F) = {}^{B}(\frac{d}{dt}h) = {}^{B}(\frac{d}{dt}(TY)) = {}^{B}(TA + \dot{T}Y)$$

$${}^{E}(TA + \dot{T}Y) = {}^{E}(TA + \dot{T}Y) = {}^{E}(TA + \dot{T}Y)$$

$${}^{E}(TA + \dot{T}Y) = {}^{E}(TA + \dot{T}Y$$

Derivations of Newton-Euler Equation

- Assume: SBS attached to the body =) VB = Vbedy, BY is constant) body $\mathcal{V}_{\text{body}}$ $\frac{d}{dt}(^{\circ}h) = \frac{d}{dt}(^{\circ}\mathbb{P}^{\circ}\mathcal{V}) = \overset{\circ}\mathbb{P}^{\circ}\mathcal{V} + \mathcal{P}^{\circ}A$ $= \frac{d}{dt} \left({}^{\circ} \chi_{B}^{*} (\chi_{B}^{*} \chi_{D}^{*}) {}^{\circ} \chi_{A} \right) + {}^{\circ} \chi_{B}^{*} \chi_{A}^{*}$ $= (\overset{\cdot}{X}_{B}^{*})^{B} \overset{\cdot}{I}^{B} \overset{\cdot}{X}_{o}^{\circ} \mathcal{V} + \overset{\circ}{X}_{B}^{*} \overset{s}{Y}_{B}^{*} \overset{s}{X}_{o}^{\circ} \mathcal{V} + \overset{\circ}{I}^{A}$ $= \left[\mathcal{V}_{B} \times^{*} \right] ^{*} \times^{*} \mathbb{T} ^{*} \times^{\circ} \mathcal{V} - ^{\circ} \times^{*} \mathbb{Y} ^{*} \times^{\circ} \mathbb{Y}$ $(\mathcal{Y}_{\mathcal{Y}}^{\star})^{\circ} \Upsilon^{\circ} \mathcal{Y} + ^{\circ} \Upsilon^{\circ} \mathcal{A}$ 7.A + 7/xx* 2437 Note: $X_{B} = [Y_{S} \times]^{*} X_{B}$, $(X_{S} \overset{B}{\times} X_{5}) = I \implies (X_{S} \overset{B}{\times} X_{5} + (X_{S} \overset{B}{\times} X_{5}))$ 29 / 31 Wei Zhang (SUSTech) Newton-Euler Equation Advanced Control for Robotics

More Discussions

More Discussions