MEE5114 Advanced Control for RoboticsLecture 9: Dynamics of Open Chains

Prof. Wei Zhang

CLEAR Lab

Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

- Spatial Accelleration: $A \in \mathbb{R}^6$, Abody \triangleq Vbody (coordinate) working with inertia / stationary frame: ${}^{\circ}$ Abody = d (${}^{\circ}$ Ubody) working with moving frame: apparent derivative Z hang (SUSTech) $1/22$

Outline

\n
$$
\mathcal{A}_{body} = \frac{\partial}{\partial t} (\mathcal{E}_{body}) + \frac{\partial}{\partial t} \mathcal{E}_{body}
$$
\n
$$
\mathcal{E}_{label} = \frac{\partial}{\partial t} (\mathcal{E}_{body}) + \frac{\partial}{\partial t} \mathcal{E}_{body}
$$
\nIntroduction

\n
$$
\mathcal{E}_{A} = \omega_{A} \times R_{A} \quad \mathcal{R}_{A} \quad \mathcal{E}_{d} = R[\omega]R^{T} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d} = \frac{\partial}{\partial t} \mathcal{E}_{d} \cdot \mathcal{E}_{d} \quad \mathcal{E}_{d
$$

From Single Rigid Body to Open Chains

• Recall Newton-Euler Equation for ^a single rigid body:

$$
- \mathcal{F} = \underbrace{\frac{d}{dt}h = \mathcal{IA} + \mathcal{V} \times^* \mathcal{IV}}_{\text{Corrdivide} - \text{free}}
$$

$$
\mathbb{L} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \\ 0 & 0 \end{bmatrix}
$$

and

$$
\mathbb{L} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

 $\sqrt{1 - 5}$

- Open chains consist of multiple rigid links connected through joints $boldes$
- Dynamics of adjacent links are coupled.

• This lecture: model multi-body dynamics subject to joint constraints.

Preview of Open-Chain Dynamics

• Equations of Motion are ^a set of 2nd-order differential equations:

$$
\Rightarrow \frac{\tau = M(\theta)\ddot{\theta} + \tilde{c}(\theta, \dot{\theta}) \leftarrow}{\tau \text{ (0.6)} + \tau \text{ (0)} + \tau^T \text{ here } \tau.
$$

- $\,\theta \in \mathbb{R}^n\colon$ vector of joint variables; $\tau \in \mathbb{R}^n\colon$ vector of joint forces/torques
- $M(\theta) \in \mathbb{R}$ $^{n\times n}$: mass matrix
- $\tilde{c}(\theta,\dot{\theta})\in \mathbb{R}^{n}$: forces that lump together centripetal, Coriolis, gravity, friction terms, and torques induced by external forces. These terms depend on θ and/or $\dot{\theta}$ Like simulation • Forward dynamics: Determine acceleration $\ddot{\theta}$ given the state $(\theta, \dot{\theta})$ and the イカ joint forces/torques: $\ddot{\theta} \leftarrow \mathsf{FD}(\tau,\theta,\dot{\theta},\mathcal{F}_{ext})$
- \bullet \ni Inverse dynamics: Finding torques/forces given state $(\theta,\dot{\theta})$ and desired acceleration θ ¨

 $\tau \leftarrow \mathsf{ID}(\theta, \dot{\theta}, \ddot{\theta}$ $\theta ,\mathcal{F}_{ext})$

Introduction

Lagrangian vs. Newton-Euler Methods

• There are typically two ways to derive the equation of motion for an open-chain robot: Lagrangian method and Newton-Euler method

Lagrangian Formulation

- Energy-based method
- Dynamic equations in closed form
- Often used for study of dynamic properties and analysis of control methods

Newton-Euler Formulation

- -- Balance of forces/torques
- Dynamic equations in numeric/recursive form
- Often used for numerical solution of forward/inverse dynamics

• We focus on Newton-Euler Formulation

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

RNEA: Notations

- • $\bullet\,$ Number bodies: 1 to N
	- -- Parent: $p(i)$
	- Children: $c(i)$
- $\bullet\,$ Joint $\it i$ connects $\it p(i)$ to $\it i$

- Frame $\{i\}$ attached to body i
- \bullet \mathcal{S}_i : Spatial velocity (screw axis) of joint i

constant

- $\bullet\;\mathcal{V}_i$ and \mathcal{A}_i : spatial velocity and acceleration of body i CIR^6
- \mathcal{F}_i : force (wrench) onto body i from body $p(i)$
- Note: By default, all vectors $(\mathcal{S}_i, \mathcal{V}_i, \mathcal{F}_i)$ are expressed in local frame $\{i\}$

RNEA: Velocity and Accel. Propagation (Forward Pass)

 $\mathbf G$ oal: Given joint velocity $\dot \theta$ and acceleration $\ddot{\theta}$, compute the body spatial velocity \mathcal{V}_i and spatial acceleration \mathcal{A}_i

(Velocity Propagation:
$$
{}^{i}V_{i} = ({}^{i}X_{p(i)}) {}^{p(i)}Y_{p(i)} + {}^{i}S_{i} \dot{\theta}_{i}
$$

\nRecall
\n
$$
\underbrace{T = \text{ID}(\theta, \dot{\theta}, \ddot{\theta}, \text{Fact})}_{\text{motion of } \theta, \ddot{\theta}, \text{Fact}} \underbrace{{}^{i}A_{i} = ({}^{i}X_{p(i)}) {}^{p(i)}A_{p(i)} + {}^{i}V_{i} \times {}^{i}S_{i} \dot{\theta}_{i} + {}^{i}S_{i} \ddot{\theta}_{i}
$$
\n
$$
T = \text{ID}(\theta, \dot{\theta}, \ddot{\theta}, \ddot{\theta}, \text{Fact})
$$
\n
$$
\underbrace{V_{i} = \text{ID}(\theta, \dot{\theta}, \ddot{\theta}, \text{Fact})}_{\text{motion of } \theta} \underbrace{V_{i}b_{q(i)} \cdot V_{i} = {}^{i}S_{i} \dot{\theta}_{i}}_{\text{motion of } \theta} \cdot \underbrace{V_{i} = S_{i} \dot{\theta}_{i} + S_{2} \dot{\theta}_{i}}_{= S_{i} \dot{\theta}_{i} + S_{2} \dot{\theta}_{i}}
$$
\n
$$
\underbrace{V_{i} = {}^{i}X_{i}S_{i} \dot{\theta}_{i} + {}^{i}S_{i} \dot{\theta}_{i}}_{= S_{i} \dot{\theta}_{i} + S_{2} \dot{\theta}_{i}}
$$
\n
$$
\underbrace{V_{i} = {}^{i}X_{i}S_{i} \dot{\theta}_{i} + {}^{i}S_{i} \dot{\theta}_{i}}_{= S_{i} \dot{\theta}_{i} + S_{2} \dot{\theta}_{i}}
$$
\n
$$
\underbrace{V_{i} = \text{N}_{i} + \text{N}_{i}V_{i}}_{= S_{i} \dot{\theta}_{i} + \text{N}_{i}V_{i}}
$$
\n
$$
\underbrace{V_{i} = \text{N}_{i} + \text{N}_{i}V_{i}}_{= S_{i} \dot{\theta}_{i} + \text{N}_{i}V_{i}}
$$
\n
$$
\underbrace{V_{i} = \text{N}_{i} + \text{N}_{i}V_{i}}_{= S_{i} \dot{\theta}_{i} + \text{N}_{i}V_{i}}
$$
\n
$$
\underbrace{V_{i} = \text{N}_{i} + \text{N}_{i}V_{
$$

$$
\frac{2}{\theta t} \left(\frac{d}{dt} \left(S_{2} \dot{\theta}_{2} \right) \right) = \left(\frac{d}{dt} \left(2 S_{2} \dot{\theta}_{2} \right) + 2 \gamma_{2} \times 2 S_{2} \dot{\theta}_{2} = 2 S_{2} \dot{\theta}_{2} + 2 \gamma_{1} \times 2 S_{2} \dot{\theta}_{2}
$$

$$
\gamma_{2}
$$

$$
2 \lambda_{2} = 2 \lambda_{1} \lambda_{1} + 2 \gamma_{2} \times 2 S_{2} \dot{\theta}_{2} + 2 \gamma_{2} \dot{\theta}_{2}
$$

RNEA: Force Propagation (Backward Pass)

Goal: Given body spatial velocity \mathcal{V}_i and spatial acceleration \mathcal{A}_i , compute the joint wrench \mathcal{F}_i and the corresponding torque $\tau_i=\mathcal{S}$ ${}^T_i\mathcal{F}_i$

$$
\begin{cases} \mathcal{F}_i &= \mathcal{I}_i \mathcal{A}_i + \mathcal{V}_i \times^* \mathcal{I}_i \mathcal{V}_i + \sum_{j \in c(i)} \mathcal{F}_j \\ \tau_i &= \mathcal{S}_i^T \mathcal{F}_i \end{cases} \qquad \qquad \mathcal{F}_{j}
$$

Body 4:

\n
$$
\begin{aligned}\n\mathcal{F}_{4} + \mathcal{F}_{94} &= \mathcal{I}_{4}A_{4} + \mathcal{V}_{4} \times^{4} \mathcal{I}_{4} \mathcal{V}_{4} \\
\mathcal{F}_{4} &= \mathcal{I}_{4}A_{4} + \mathcal{V}_{4} \times^{4} \mathcal{I}_{4} \mathcal{V}_{4} - \mathcal{F}_{94} \\
\mathcal{F}_{4} &= \mathcal{I}_{4}A_{9} = \mathcal{I}_{4} \mathcal{V}_{8} \mathcal{I}_{9} \\
\mathcal{I}_{7} &= \mathcal{I}_{4} \mathcal{V}_{9} = \mathcal{I}_{4} \mathcal{V}_{8} \mathcal{I}_{9} \\
\mathcal{I}_{8} &= \mathcal{I}_{4} \mathcal{V}_{9} = \mathcal{I}_{4} \mathcal{V}_{8} \mathcal{I}_{9} \\
\mathcal{I}_{9} &= \mathcal{I}_{4} \mathcal{V}_{9} \mathcal{I}_{9} \\
\mathcal{I}_{1} &= \mathcal{I}_{4} \mathcal{I}_{9} \mathcal{I}_{9} \\
\mathcal{I}_{2} &= \mathcal{I}_{4} \mathcal{I}_{9} \mathcal{I}_{9} \\
\mathcal{I}_{1} &= \mathcal{I}_{4} \mathcal{I}_{9} \mathcal{I}_{9} \\
\mathcal{I}_{2} &= \mathcal{I}_{4} \mathcal{I}_{9} \mathcal{I}_{9} \\
\mathcal{I}_{1} &= \mathcal{I}_{4} \mathcal{I}_{9} \mathcal{I}_{9} \\
\mathcal{I}_{2} &= \mathcal{I}_{4} \mathcal{I}_{9} \\
\mathcal{I}_{1} &= \mathcal{I}_{4} \mathcal{I}_{9} \\
\mathcal{I}_{1} &= \mathcal{I}_{4} \mathcal{I}_{9} \
$$

Recursive Newton-Euler Algorithm
\n
$$
\pi \leftarrow \text{RNEA}(0, 0, 0, E_{ext}: \text{Model})
$$
\n
$$
\pi_{\tilde{f}} = T_{\tilde{f}}, A_{\tilde{f}} + \lambda_{\tilde{f}} \times T_{\tilde{g}} \lambda_{\tilde{f}}
$$
\n• Forward pass:
$$
\sqrt{\pi n} \cdot \pi \cdot \frac{1}{\pi} \cdot \frac{1}{
$$

Outline

• Introduction

- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

Structures in Dynamic Equation (1/3)

 $\bullet\,$ Jacobian of each link (body): $\,J_1,\ldots,J_4\,$

$$
J_{1} : \text{denote the Jacobian } \rightarrow \text{body } i, \quad i.e. \quad U_{i} = J_{1} \circ \leftarrow [J_{2} \cdot J_{12} \cdot J_{12}] \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \dot{\theta}_{3} \end{bmatrix}
$$
\n
$$
{}^{2} J_{1} = J_{1} \circ \leftarrow [J_{1} \circ J_{1} \circ J_{2} \circ J_{1} \circ J_{2} \circ J_{1} \circ J_{2} \circ J_{1} \circ J_{2} \circ J_{2
$$

Structures in Dynamic Equation (2/3)

•• Torque required to generate a "force" \mathcal{F}_4 to body 4

see the two-body example: O Forward pass: $V_i = S_i \dot{\theta}_i$, $V_z = [{}^zV_i S_i : S_z]_{\begin{bmatrix} \dot{\theta}_i \\ \dot{\theta}_i \end{bmatrix}}$ A_1 , A_2 . (2) Back ward pass: $J_2 = (J_2A + V_1X^*Y_1V_2 - V_2X^*)$ $F = 1.4. + 11x^{2}y + 1x^{2}z^{2}$ = $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{4}$ $T_1 = S_1^T f_1 = S_1^T (X_{11} \cdots) = S_1^T f_2 \cdots$ $\vec{L}_1 = S_1^T \hat{J}_1 = \frac{S_1^T (\hat{J}_1 A_1 + \cdot \cdot)}{S_1^T (\hat{J}_1 A_1 + \cdot \cdot)} + \frac{S_1^T (\hat{J}_1 A_1 + \cdot \cdot)}{S_1^T (\hat{J}_1 A_1 + \cdot \cdot \cdot)} + \frac{S_1^T (\hat{J}_1 A_1 + \cdot \cdot \cdot)}{S_1^T (\hat{J}_1 A_1 + \cdot \cdot \cdot)} + \frac{S_1^T (\hat{J}_1 A_1 + \cdot \cdot \cdot)}{S_1^T (\hat{J}_1 A_1 + \cdot \cdot \cdot \cdot)} + \frac{S_1^T (\$ Structures in Dynamic Equation (3/3)

• Overall torque expression: torque @ joint 2 due
I to motion at body 2. 2 torque @ joint 1 due to motion of body 2 \mathcal{F}_{i}^{\star} $T = [T_1] = [S_1^T(\Upsilon_1 A + \cdots) + (\Upsilon_1 S_1)^T(\Upsilon_1 A_2 - \cdots) + (\Upsilon_1 S_1)^T(-\Upsilon_2 A_2)]$
 $0(\Upsilon_1 A_1 + \cdots) + S_2^T(\Upsilon_2 A_2 + \cdots) + S_2^T(-\Upsilon_2 A_2)$ $= \left[\begin{array}{c} S_1 \\ S_2 \end{array}\right](\mathfrak{X} A_1 + \cdot) + \left[\begin{array}{c} (\mathfrak{X} A_2 + \cdot) \\ \cdot \end{array}\right] + \left[\begin{array}{c} (\mathfrak{X} B_1) \\ \cdot \end{array}\right] + \left[\begin{array}{c} (\mathfrak{X} B_2) \\ \cdot \end{array}\right] + \left[\begin{array}{c} (\mathfrak{X} B_1) \\ \cdot \end{array}\right]$ $[s_1 \mid 0]$ $[5x_{151} \quad 52]$ Dynamics Advanced Control for Robotics Wei Zhang (SUSTech) ¹⁴ / ²² Derivation of Overall Dynamics Equation

\n T_{α} : body (t'ok i Jacobian, $V_{\alpha} = J_{\alpha} \circ$)\n
\n $T = \begin{bmatrix} t_1 \\ t_n \end{bmatrix} \in \mathbb{R}^n$, T ylogi, two major roles\n
\n $T = \begin{bmatrix} t_1 \\ t_n \end{bmatrix} \in \mathbb{R}^n$, T ylogi, two major roles\n
\n $\begin{bmatrix} 0 & \text{generate} & \text{motion} \\ 0 & \text{generate} & \text{force} \end{bmatrix}$ \n
\n $\begin{bmatrix} 3 & \text{of} & \text{from} \\ 0 & \text{of} & \text{other} \end{bmatrix}$ \n
\n $\begin{bmatrix} 3 & \text{of} & \text{from} \\ 0 & \text{of} & \text{other} \end{bmatrix}$ \n
\n $T = T_{\alpha} \begin{bmatrix} T_{\alpha} + V_{\alpha} \times T_{\alpha} V_{\alpha} \end{bmatrix} = T_{\alpha} \begin{bmatrix} T_{\alpha} \\ T_{\alpha} \end{bmatrix}$ \n
\n $T = T_{\alpha} \begin{bmatrix} T_{\alpha} + V_{\alpha} \times T_{\alpha} V_{\alpha} \end{bmatrix} = T_{\alpha} \begin{bmatrix} T_{\alpha} \\ T_{\alpha} \end{bmatrix}$ \n

Properties of Dynamics Model of Multi-body Systems

- If consider all the bodies.
\n
$$
\tau = \text{all notims } + \text{all from } -
$$
\n
$$
= \left(\sum_{i=1}^{n} \tau_i \left(\frac{\gamma_i}{\lambda_i} + \gamma_i x^* \gamma_i \right) \right) + \tau_i^T \left(-\frac{\gamma_i}{\lambda_i} \right) \cdot \frac{1}{\lambda_i} \right)
$$

Outline

- Introduction
- Inverse Dynamics: Recursive Newton-Euler Algorithm (RNEA)
- Analytical Form of the Dynamics Model
- Forward Dynamics Algorithms

Forward Dynamics Problem

this is not the most efficient way

- \bullet Inverse dynamics: $(\tau\!\!\!\!/ \leftarrow \textsf{RNEA}(\theta, \dot{\theta}, \ddot{\theta})$ $\theta ,\mathcal{F}_{ext}) \qquad \quad O(N)$ complexity
	- -- $\,$ RNEA can work directly with a given URDF model (kinematic tree $+$ joint model $+$ dynamic parameters). It does not require explicit formula for $M(\theta), \tilde{c}(\theta, \dot{\theta})$
- **Forward dynamics:** Given $(\theta, \dot{\theta})$, τ , \mathcal{F}_{ext} , find $(\ddot{\theta})$ 1. Calculate $\tilde{c}(\theta,\dot{\theta})$
	- 2. Calculate mass matrix $M(\theta)$

3. Solve
$$
M\ddot{\theta} = \frac{\tau}{\Lambda} - \frac{\tilde{c}}{\Lambda}
$$
 \Rightarrow $\dot{\theta} = M^{-1}(\tau - \tilde{c})$

Calculations of \tilde{c} and M

 $\bullet \hspace{0.1cm}$ Denote our inverse dynamics algorithm: $\sqrt{\tau}$ $=$ RNEA $(\theta, \dot{\theta})$ $\dot{\theta}, \ddot{\theta}$ $\theta ,\mathcal {F}_{ext})$

•**• Calculation of** \tilde{c} : obviously, $\tau = \tilde{c}(\theta, \dot{\theta})$ $\dot{\theta})$ if $\ddot{\theta}$ $\theta=0$. Therefore, \tilde{c} can be computed via:

$$
\tilde{c}(\theta, \dot{\theta}) = \text{RNEA}(\theta, \dot{\theta}, 0, \mathcal{F}_{ext}) = \left(\underbrace{\hat{c}(\mathbf{0}.\dot{\theta}) \, \dot{\theta} \, \tau \, \tau}_{\mathbf{0}} + \mathbf{0} \mathbf{0} \mathbf{0} \right)
$$

 \bullet **Calculation of** M : Note that $\tilde{c}(\theta, \dot{\theta})$ $\dot{\theta}) = c(\theta, \dot{\theta})$ $\dot{\theta})\dot{\theta}$ $\hat{\theta}-\widehat{\tau_g}-\underline{J}^T(\theta)\mathcal{F}_{ext}.$

- Set $\mathrm{g}=0$, $\mathcal{F}_{ext}=0$, and $\dot{\theta}$ $\dot{\theta}=0$, then $\tilde{c}(\theta,\dot{\theta})$ $\dot{\theta})=0$ \Rightarrow $\tau = M(\theta)\ddot{\theta}$ θ -- We can compute the j th column of $\underline{M}(\theta)$ by calling the inverse algorithm

$$
\angle M_{:,j}(\theta) = \text{RNEA}(\theta, 0, \ddot{\theta}_j^0, 0) \qquad \ddot{\theta}_j^{\prime\prime} = \begin{bmatrix} 0 & \ddots & \ddots & \ddots \\ \theta_j & \ddots & \ddots & \ddots \\ \theta_j & \ddots & \ddots & \ddots \\ \theta_j & \ddots & \ddots & \ddots \end{bmatrix}
$$

where ¨ $\ddot\theta^0_j]$ is a vector with all zeros except for a 1 at the j th entry.

 \bullet A more efficient algorithm for computing M is the Composite-Rigid-Body Algorithm (CRBA). Details can be found in Featherstone's book.

Forward Dynamics Algorithm

- $\bullet\;$ Now assume we have $\theta, \dot{\theta}, \tau, M(\theta), \tilde{c}(\theta, \dot{\theta}),$ then we can immediately compute $\ddot{\theta}$ as $\ddot{\theta}$ = M − 1 (θ) $\overline{}$ $\tau-\tilde{c}(\theta,\dot{\theta})$ \lceil
- • $\bullet\,$ This provides a 2nd-order differential equation in $\mathbb R$ n , we can easily simulate the joint trajectory over any time period (under given ICs θ o and $\dot{\theta}$ o)

Inertia matrix symmetric/positive semiclefonite More Discussions

- \vec{e} \bullet $\triangleq N(\theta)$
	- $M(\theta)$: Mass matrix, $M(\theta)^T = M(\theta)$, $M(\theta)$ is ulso positive semi-definite.
- . There are many equivalent ways to define $C(\theta, \dot{\theta})$, they all folcad to the ps same product $(6, 6)$ o $C(0,0)$

$$
eg, \quad \boxed{C(\omega, \dot{\theta})\dot{\theta}} = \begin{bmatrix} -2\dot{\theta}_{2}\dot{\theta}_{1} \\ \dot{\theta}_{1}^{2} \end{bmatrix} = \begin{bmatrix} -2\dot{\theta}_{2} & \dot{\theta} \\ \dot{\theta}_{1} & \dot{\theta} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}
$$

$$
= \begin{bmatrix} 0 & -2\dot{\theta}_{1} \\ \dot{\theta}_{1} & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \end{bmatrix}
$$

More Discussions

\n- \n
$$
T_{\text{eff}} \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant of } C
$$
\n
$$
C \text{ is a constant
$$