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Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations
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Motivations

• Most engineering systems (including most robotic systems) are modeled by
Ordinary Differential (or Difference) Equations (ODEs)

• Example: Dynamics of 2R robot

τ = M(θ)θ̈ + c(θ, θ̇) + g(θ)︸ ︷︷ ︸
h(θ,θ̇)

,
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• Screw theory, exponential coordinate, and Product of Exponential (PoE) are
based on the (linear) differential equation view of robot kinematics
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Linear Differential Equations (Autonomous)

• Linear Differential Equations: ODEs that are linear wrt variables
e.g.: {

ẋ1(t) + x2(t) = 0

ẋ2(t) + x1(t) + x2(t) = 0

{
ÿ(t) + z(t) = 0

ż(t) + y(t) = 0

• State-space form (1st-order ODE with vector variables):
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General Linear Control Systems

• General (Autonomous) Dynamical Systems: ẋ(t) = f(x(t))

- x(t) ∈ R
n: state vector, f : Rn → R

n: vector field

• Non-autonomous: ẋ(t) = f(x(t), t)

• Control Systems: ẋ(t) = f(x(t), u(t))

- vector field f : Rn × R
m depends on external variable u(t) ∈ R

m

• General Linear Control Systems:{
ẋ(t) = Ax(t) +Bu(t), with x(0) = x0

y(t) = Cx(t) +Du(t)

- x ∈ R
n: system state, u ∈ R

m: control input, y ∈ R
p: system output

- A,B,C,D are constant matrices with appropriate dimensions
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Existence and Uniqueness of ODE Solutions

• Function g : Rn → R
p is called Lipschitz over domain D ⊆ R

n if ∃L < ∞
‖g(x)− g(x′)‖ ≤ L‖x− x′‖, ∀x, x′ ∈ D

• Theorem [Existence & Uniqueness] Nonlinear ODE

ẋ(t) = f(x(t), t), I.C. x(t0) = x0

has a unique solution if f(x, t) is Lipschitz in x and piecewise continuous in t
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Existence and Uniqueness of Linear Systems

• Corollary: Linear system

ẋ(t) = Ax(t) +Bu(t)

has a unique solution for any piecewise continuous input u(t)

• Homework: Suppose A becomes time-varying A(t), can you derive conditions
to ensure existence and uniqueness of ẋ(t) = A(t)x(t) +Bu(t)?
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Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations
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How to Solve Linear Differential Equations?

• General linear ODE: ẋ(t) = Ax(t) + d(t)

• The key is to derive solutions to the autonomous linear case: ẋ(t) = Ax(t),
with x(t) ∈ R

n, A ∈ R
n×n, and initial condition (IC) x(0) = x0.

• By existence and uniqueness theorem, the ODE ẋ = Ax admits a unique
solution.

• It turns out that the solution can be found analytically via the Matrix
Exponential
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What is the ”Euler’s Number” e?

• Consider a scalar linear system: z(t) ∈ R and a ∈ R is a constant

ż(t) = az(t), with initial condition z(0) = z0 (1)

• The above ODE has a unique solution:

• What is the number “e”?
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Complex Exponential

• For real variable x ∈ R, Taylor series expansion for ex around x = 0:

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

• This can be extended to complex variables:

ez =

∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+

z3

3!
+ · · ·

This power series is well defined for all z ∈ C

• In particular, we have ejθ = 1 + jθ − θ2

2 − j θ3

3! + · · ·
• Comparing with Taylor expansions for cos(θ) and sin(θ) leads to the Euler’s

Formula
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Matrix Exponential Definition

• Similar to the real and complex cases, we can define the so-called matrix
exponential

eA �
∞∑
k=0

Ak

k!
= I +A+

A2

2!
+

A3

3!
+ · · ·

• This power series is well defined for any finite square matrix A ∈ R
n×n.
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Some Important Properties of Matrix Exponential

• AeA = eAA

• eAeB = eA+B if AB = BA

• If A = PDP−1, then eA = PeDP−1

• For every t, τ ∈ R, eAteAτ = eA(t+τ)

• (
eA

)−1
= e−A
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• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations
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Autonomous Linear Systems

ẋ(t) = Ax(t), with initial condition x(0) = x0 (2)

• x(t) ∈ R
n, A ∈ R

n×n is constant matrix, x0 ∈ R
n is given.

• With the definition of matrix exponential, we can show that the solution
to (2) is given by

x(t) = eAtx0
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Computation of Matrix Exponential (1/2)

• Directly from definition

• For diagonalizable matrix:
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Computation of Matrix Exponential (2/2)
• Using Laplace transform
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Solution to General Linear Systems

{
ẋ(t) = Ax(t) +Bu(t), with x(0) = x0

y(t) = Cx(t) +Du(t)
(3)

• x ∈ R
n is system state, u ∈ R

m is control input, y ∈ R
p is the system output

• A,B,C,D are constant matrices with appropriate dimensions

• Homework: The solution to the linear system (3) is given by{
x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

y(t) = CeAtx0 + C
∫ t

0
eA(t−τ)Bu(τ)dτ +Du(t)
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More Discussions
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