MEE5114(Sp22) Advanced Control for Robotics Lecture 1: Linear Differential Equations and Matrix Exponential

Prof. Wei Zhang

SUSTech Insitute of Robotics Department of Mechanical and Energy Engineering Southern University of Science and Technology, Shenzhen, China

Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations

Motivations

• Most engineering systems (including most robotic systems) are modeled by Ordinary Differential (or Difference) Equations (ODEs)

• Screw theory, exponential coordinate, and Product of Exponential (PoE) are based on the (linear) differential equation view of robot kinematics

Linear Differential Equations (Autonomous)

• Linear Differential Equations: ODEs that are linear wrt variables e.g.: $\begin{cases} \end{cases}$ $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $\int \dot{x}_1(t) + x_2(t) = 0$ $\int \tilde{y}(t) + z(t) = 0$ $\dot{x}_2(t) + x_1(t) + x_2(t) = 0$ $\dot{z}(t)+y(t)=0$ • State-space form (1st-order ODE with vector variables): Linear Vector field

General Linear Control Systems $\int f(x) = Ax$ $\bullet\,$ General (Autonomous) Dynamical Systems: $\dot{x}(t) = f(x(t))$ - $x(t)\in \mathbb{R}^n$: state vector, $f:\mathbb{R}^n\rightarrow \mathbb{R}^n$: *vector field* $\bullet\,$ Non-autonomous: $\dot{x}(t)=f(x(t),t)$ • Control Systems: $\dot{x}(t) = f(x(t), u(t))$ - $\,$ vector field $f : \mathbb{R}^n \times \mathbb{R}$ m depends on external variable $u(t)\in\mathbb{R}$ $\,m$ • General Linear Control Systems: $\begin{cases} \end{cases}$ $\int \dot{x}(t) = Ax(t) + Bu(t)$, with $x(0) = x_0$ $\boldsymbol{\mathcal{D}}$ $y(t) = Cx(t) + Du(t)$ - $x\in\mathbb{R}^n$: system state, $u\in\mathbb{R}^m$: control input, $y\in\mathbb{R}^p$: system output

- $\ A,B,C,D$ are constant matrices with appropriate dimensions

Existence and Uniqueness of Linear Systems

• **Corollary**: Linear system $\dot{x}(t) = Ax(t) + Bu(t)$ has a unique solution for any piecewise continuous input $u(t)$ $(P(C,))$ check condition. $Proz + 1$ $0 \qquad |I \hat{f}(x,t) - \hat{f}(x',t)| = ||A(x-x')|| \le ||A||||x-y'||$ $(2) f(x,t) = (Ax + 9y(t))$ is also piecentre
 $f(x) = \frac{2}{\pi}$ Continuous Continuous in + Lbecause ulty in P.c. \bullet $|$ Homework: Suppose A becomes time-varying $A(t)$, can you derive conditions •to ensure existence and uniqueness of $\dot{x}(t) = A(t) x(t) + B u(t) ?$

Outline

• Linear System Model

• Matrix Exponential

• Solution to Linear Differential Equations

How to Solve Linear Differential Equations?

- \bullet General linear ODE: $\dot{x}(t) = Ax(t) + d(t)$
- $\bullet\,$ The key is to derive solutions to the autonomous linear case: $(\dot{x}(t)=Ax(t),t)$ with $x(t)\in\mathbb{R}$ n , $A\in\mathbb{R}$ $^{n\times n}$, and initial condition (IC) $x(0)=x_0.$

$$
n - by - n
$$
 matrix

- \bullet $\bullet\,$ By existence and uniqueness theorem, the ODE $\dot{x}=Ax$ admits a unique solution.
- It turns out that the solution can be found analytically via the *Matrix* **Exponential**

What is the "Euler's Number" e ?

 $\bullet\,$ Consider a scalar linear system: $z(t)\in\mathbb{R}$ and $a\in\mathbb{R}$ is a constant

 $\dot{z}(t)=az(t),\quad$ with initial condition $z(0)=z_0$

• The above ODE has ^a unique solution: • What is the number "e"? - Euler's number

- refined as the number such that $(e^x)' = e^x$ $(2^x)' + 2^x$ $\Rightarrow \lim_{h\to 0} \frac{e^{x+h}-e^{x}}{h}=e^{x} \Rightarrow \frac{e^{h}-1}{h} \xrightarrow{h\geq 0} 1$

 $\Rightarrow e^{h} \Rightarrow h^{+} \Rightarrow e^{h} = lim_{h \gg 0} (h^{+}1)^{1/2}$

(1)

Complex Exponential

 χ

 $\bullet\,$ For real variable $x\in\mathbb{R},\,$ Taylor series expansion for e^x around $x=0$:

$$
e^{x} \triangleq \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \left(\frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n}\right) \triangleq 1 + x + \frac{x^{2}}{2!} + \cdots
$$

• This can be extended to complex variables:

$$
f'(z) \qquad e^z \stackrel{d}{=} \sum_{k=0}^{\infty} \frac{z^k}{k!} = 1 + \overline{z} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots
$$
\nThis power series is well defined for all

\n
$$
z \in \mathbb{C}
$$

- \bullet $\bullet\,$ In particular, we have $e^{j\theta}=1+j\theta-\frac{\theta^2}{2}-j\frac{\theta^3}{3!}+\cdots$
- •Comparing with Taylor expansions for $\cos(\theta)$ and $\sin(\theta)$ leads to the Euler's

Formula
 $\begin{cases} \sin \theta = \left(-\frac{\theta^3}{\beta'} + \frac{\theta^5}{5!} - \frac{\theta^7}{1!} \right) \\ \cos \theta = \left(-\frac{\theta^1}{5!} + \frac{\theta^6}{4!} + \cdots \right) \end{cases} \Rightarrow \frac{e^{3\theta} = \cos \theta + \sin \theta}{\sin \theta}$ Formula

 e^x

Matrix Exponential Definition

• Similar to the real and complex cases, we can define the so-called *matrix* exponential

$$
e^A \triangleq \sum_{k=0}^{\infty} \frac{A^k}{k!} = \left(I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots \right)
$$

$$
e^{\lambda} = \mathbb{I} + \begin{bmatrix} 0 \\ s \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
$$

\n
$$
\mathcal{I}f \quad A = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \quad e^A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \lambda_1 \\ s \end{bmatrix} + \begin{bmatrix} \frac{\lambda_1^2}{2!} & 0 \\ \frac{\lambda_2^2}{2!} & \frac{\lambda_1^2}{2!} \end{bmatrix} + \dots
$$

\nThis power series is well defined for any finite square matrix $A \in \mathbb{R}^{n \times n}$.

 $\bullet\,$ This power series is well defined for any finite square matrix $A\in\overline{\mathbb{R}}$

Some Important Properties of Matrix Exponential • AeA=eAA•eAeB=eA+ B if AB= BA • IfA= PDP 1, then eA= P ^e DP1• For every t, ^τ ∈ ^R, ^eAt ^eAτ =eA(^t + τ) •eA 1=eA

• Solution to Linear Differential Equations

Autonomous Linear Systems

$$
\sum_{\dot{x}(t) = Ax(t), \quad \text{with initial condition } x(0) = x_0 \tag{2}
$$

- $\bullet\;x(t)\in\mathbb{R}$ $^n, \, A \in \mathbb{R}$ $^{n\times n}$ is constant matrix, $x_0\in\mathbb{R}$ n is given.
- With the definition of matrix exponential, we can show that the solution to (2) is given by

$$
x(t) = (e^{At}x_0)
$$
\n
$$
x(t) = e^{At}x_0
$$
\n
$$
y(t) = e^{At}x_0
$$
\n
$$
y(t
$$

Computation of Matrix Exponential $(1/2)$ = A· e^{At} x, \vee

• Directly from definition

For diagonalizable matrix:
\n
$$
A^2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
, $A^2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Rightarrow A^2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
\nFor diagonalizable matrix:
\n $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $A^2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Rightarrow A^2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
\n $= \begin{bmatrix} 1 & 0 \\ 0 & 1$

Computation of Matrix Exponential (2/2)

• Using Laplace transform
\n
$$
\vec{x} = A\vec{x} , \vec{x}' = \sqrt{x}
$$
\n
$$
\begin{array}{ccc}\n\therefore & \hat{x} = A\vec{x} , \vec{x}' = \sqrt{x} \text{ s.} \\
\text{Laplace transform:} & \text{if } \vec{x}(t) \iff \vec{x}(s) \text{ s.} \\
\therefore & \hat{x}(t) \iff \vec{x}(s) \text{ s.} \\
\therefore & \hat{x}(t) \iff \vec{x}(s) \text{ s.} \\
\therefore & \hat{x}(t) \iff \vec{x}(s) \text{ s.} \\
\end{array}
$$
\n
$$
\begin{array}{ccc}\n\Rightarrow & \hat{x}(s) = (sI + A)^{1}x \text{ s.} \\
\Rightarrow & \hat{x}(s) = (sI + A)^{1}x \text{ s.} \\
\Rightarrow & \hat{x}(s) = (sI + A)^{1}x \text{ s.} \\
\end{array}
$$
\n
$$
\begin{array}{ccc}\n\Rightarrow & \hat{x}(t) = \int_{0}^{t} [(sI - A)^{1}x] \text{ s.} \\
\text{where } & \hat{x}(t) = e^{At}x \text{ s.} \\
\end{array}
$$

Solution to General Linear Systems

$$
\begin{cases}\n\dot{x}(t) = Ax(t) + Bu(t), & \text{with } x(0) = x_0 \\
y(t) = Cx(t) + Du(t)\n\end{cases}
$$
\n(3)

 $\bullet\;x\in\mathbb{R}$ n is system state, $u\in\mathbb{R}$ m is control input, $y\in\mathbb{R}^p$ is the system output

 \bullet A, B, C, D are constant matrices with appropriate dimensions

• **Homework:** The solution to the linear system (3) is ^given by

$$
\begin{cases}\nx(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau \\
y(t) = Ce^{At}x_0 + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)\n\end{cases}
$$

More Discussions